Thesis Consent Form

This thesis may be consulted for the purposes of research or private study provided that due
acknowledgement is made where appropriate and that permission is obtained before any material from the
thesis is published. Students who do not wish their work to be available for reasons such as pending
patents, copyright agreements, or future publication should seek advice from the Graduate Centre as to
restricted use or embargo.

Author of thesis Jared Tobin

Title of thesis Embedded Domain-Specific Languages for Bayesian Modelling and Inference
Name of degree Doctor of Philosophy (Statistics)

Date Submitted 2017/05/01

Print Format (Tick the boxes that apply)

I agree that the University of Auckland Library may make a copy of this thesis available for the
collection of another library on request from that library.

I agree to this thesis being copied for supply to any person in accordance with the provisions
of Section 56 of the Copyright Act 1994.

Digital Format - PhD theses

I certify that a digital copy of my thesis deposited with the University is the same as the final print
version of my thesis. Except in the circumstances set out below, no emendation of content has
occurred and I recognise that minor variations in formatting may occur as a result of the conversion to
digital format.

Access to my thesis may be limited for a period of time specified by me at the time of deposit. I
understand that if my thesis is available online for public access it can be used for criticism, review,
news reporting, research and private study.

Digital Format - Masters theses

I certify that a digital copy of my thesis deposited with the University is the same as the final print
version of my thesis. Except in the circumstances set out below, no emendation of content has
occurred and I recognise that minor variations in formatting may occur as a result of the conversion to
digital format.

Access will normally only be available to authenticated members of the University of Auckland, but I
may choose to allow public access under special circumstances. I understand that if my thesis is
available online for public access it can be used for criticism, review, news reporting, research and
private study.

Copyright (Digital Format Theses) (Tick ONE box only)

I confirm that my thesis does not contain material for which the copyright belongs to a third
party, (or) that the amounts copied fall within the limits permitted under the Copyright Act
1994.

I:' I confirm that for all third party copyright material in my thesis, I have obtained written

permission to use the material and attach copies of each permission, (or) I have removed the
material from the digital copy of the thesis, fully referenced the deleted materials and, where
possible, provided links to electronic sources of the material.

Signature o Date
— o= 2018/01/10

Comments on access conditions

Faculty Student Centre / Graduate Centre only: Digital copy deposited O Signature Date

December 2015 [PYPY®] THE UNIVERSITY OF
Research Support Services “ AUCKLAND

Libraries and Learning Services w :w:;/wmzﬂpsnimt':‘:(;

Embedded Domain-Specific
Languages for Bayesian Modelling
and Inference

A dissertation submitted to the University of Auckland
in fulfillment of the requirements of the degree of
Doctor of Philosophy (Ph.D.) in Statistics

Jared Tobin

January 11, 2018

Abstract

This dissertation defends the thesis that novel and useful domain-specific lan-
guages for solving statistical problems can be embedded in statically-typed, purely-
functional programming languages.

It presents techniques for representing probability distributions in embedded
languages, deeply-embedding a type-safe probabilistic programming language
in a way that is amenable to inference, and embedding a language for building

composite Markov transition operators that can be used in MCMC.

Acknowledgements

I owe a debt of thanks to everyone and everything that encouraged me to
enrol in a PhD programme and helped me see it through to the end.

Thanks to Josh Stella & the crew at Fugue, Tom Nielsen at Openbrain, Richard
Dunne at Bdellium, and my old friends at T&W for being patient with me while
I slogged away at this PhD. And a special thanks to Noel Cadigan and Gary
Sneddon — my former supervisors — as well as Leslie Kennedy — my former
high-school English teacher — each for having been a rather direct impetus for
my success in some way.

Thanks go to Matt Might and Dan Roy — two people I've never met, but
whose research and writing compelled me to learn more about computer science,
probabilistic programming, and Haskell. And whoever it was who posted that
notification on the Well-Typed blog about the 2012 Haskell summer school in
France — apparently it was Eric Kow — do I ever owe you a drink or something.

Thanks to all the authors of the high-quality open-source software and open-
access research that I use every day. You're an inspiration and I want to be just
like you.

Thanks to my fantastic supervisor Russell, not only for your patience and
ever-constructive advice, but also the freedom you gave me to explore literally
life-changing avenues of statistics and computer science.

But most importantly: without my wonderful family and friends, this doc-
ument would surely not exist. My partner Nadine, my parents Bob & Marilyn,
my siblings Shawn & Rachel, and my friends around the world: the notion that I
could express my gratitude through some mere poetry is comedy, so I will con-

tinue to demonstrate my appreciation to you for as long as I live.

Contents

1 Thesis
1.1 Representing Probability Distributions
1.2 Representing Structured Probabilistic Models
1.3 Declarative Markov Chains
1.4 ScopeofFormality
1.5 Wrappingup o .

2 Language Engineering in Haskell

2.1

2.2

2.3

2.4

2.5

Abstract and Contributions

Motivation
2.2.1 Domain Specific Languages and Haskell
Algebraic Data Types
2.3.1 Abstract Termsand Types
2.3.2 Termsand TypesinHaskell
2.3.3 A Proto-Representation For Probability Distributions . .
Parametric Polymorphism and Typeclasses
2.4.1 The Functor Typeclass
2.4.2 Another Proto-Representation
2.4.3 The Applicative Typeclass
2.4.4 The Monad Typeclass
Conclusion L
2.5.1 An Embedded Language for Probability Distributions . .

11
14
14
15
16
17

19
19
20
22
25
25
28
29
31
34
37
39
43
50
50

3 Representing Probability Distributions 55
3.1 Abstract and Contributions 55
3.2 Motivation 57
3.3 Theoretical Background 58

3.3.1 Categorical Foundations 58
3.3.2 Probabilistic Foundations 60
3.3.3 PisaFunctor. 63
3.34 PisaMonad 65
3.3.5 P isan Applicative Functor 69
3.4 Measure, Integral, and Continuation 69
3.4.1 TypeclassInstances 73
3.5 Conceptual Example. L 78
3.6 Using The Measure Representation 8o
3.6.1 Constructing Measures 80
3.6.2 Querying Measures 83
3.6.3 Operations on Product Measures 89
3.7 Example: Chinese Restaurant Process Measure 93
3.8 Summary 99
3.8.1 Computational and Feature Limitations 101
3.8.2 Comparison with Other Work 103
3.9 Conclusion 106

4 Representing Structured Probabilistic Models 108
4.1 Abstract and Contributions 108
4.2 A Sampling Function-Based Representation. 110

4.2.1 Implementation and Computational Complexity 111
4.2.2 A Sampling-Based Embedded Language 118
4.3 Preserving Model Structure L. 122
4.3.1 Motivation. oo 122

4.3.2 Towards A Deep Embedding 125

4.3.3 Algebraic Freeness and the Free Monad 127
4.4 A Concrete Deep Embedding 132
4.4.1 Forward-Mode Interpretation 138
4.4.2 Backward-Mode Inference 140
4.5 Working with Structure L. 147
4.5.1 Algebraic Cofreeness and the Cofree Comonad 150
4.5.2 Representing Programs That Terminate. 153
4.5.3 Running Markov Chains over Execution Traces 156
4.5.4 Working With Execution Traces 163
4.6 Encoding Structural Independence 168
4.7 Summary and Comparison to Other Work 172
4.7.1 Free Monad Encoding 172
472 Inference 175
4.8 Conclusion 177
Declarative Markov Chains 179
5.1 Abstract and Contributions 179
5.2 Motivation e 180
5.3 The Structure of Markov Transitions 185
5.3.1 MarkovChains 185
5.3.2 TheStateMonad 188
5.4 A Shallowly Embedded Language For Transitions 196
5.5 Primitive Transition Operators 199
5.5.1 A Concrete State Type 200
5.5.2 Metropolis-Hastings (MH) 203
5.5.3 Slice Sampling 204
5.5.4 Hamiltonian Monte Carlo (HMC) 205
5.5.5 Metropolis-adjusted Langevin Diffusion (MALA) 205
5.5.6 No U-Turn Sampler (NUTS) 206

5.6
5.7

5.8

59

Composite Transition Operators
Simulations.
57.1 Overview
5.7.2 TargetDensities
5.7.3 Configuration Lo
574 Results
Extensions
581 Annealing o L
5.8.2 Coupled Chains and Tempering

Summary and Comparison to Other Work

5.10 Conclusion

6 Conclusion

6.1 Representing Probability Distributions

6.2 Representing Structured Probabilistic Models

6.3 Declarative Markov Chains

6.4 Commentary and Future Work
Appendices

A Cofree Encoding and MCMC Code

B Primitive Markov Transition Code

B.1
B.2

Metropolis-Hastings
Slice Sampling Lo
Metropolis-Adjusted Langevin Diffusion
Hamiltonian Monte Carlo

No U-Turn Sampler

232
232
233
233
234

237

238

List of Figures

3.1

3.2

33

3.4

Mappings between various spaces. v is a measure on (X, X') and
T is a measurable mapping from (X, X) to (Y,)). The measure
¢, defined on (Y,)), is the pushforward of v under 7".
Mappings between various spaces. Each application of P to a
measurable space brings it to the space of measures over itself,
while applying P to a measurable mapping brings it to a mapping
between the space of measures on each. The core monadic ‘join’
operator ; normalizes a tower of spaces of measures by one level.
Mappings between various spaces. P(M)@ P(N) is the product
of the spaces of measures over M and N respectively and has
the natural projections associated with a product. The natural

transformation ¢ corresponding to the monoidal structure of P

64

67

takes that product to the space of measures over the product M@ N. 70

A plot of the cumulant generating functions (CGFs) recovered
from various measures over the interval ¢ € [—5,5]. The red
curve corresponds to a binomial(10, 0.5) measure, the green to
a beta-binomial(10, 1, 2) measure, and the blue to the measure
defined by binomial(10, 0.5) + binomial(10, 0.2). The CGF for a
binomial(n, p) measure is known to be nlog(1 — p + pe') and is

additive in the case of convolution.

35

3.6

3.7

3.8

4.1

Mappings between various spaces. Here, Py x Py is a product
measure over (R?, B ® B). The function 7 : R?* — R is defined
as({x,y}) = r+y and collapses any element of R? into an ele-

ment of R by summing its components together. Pushing it onto

the product measure Px x Py creates the pushforward measure
Pxy. This is an equivalent construction for measure convolu-

tion as described in Section3.3. 90
A plot of the cumulative distribution functions recovered from

three measures. The red CDF corresponds to a standard Gaussian
measure, the green CDF to an empirical measure constructed by
sampling 15 values from a Gaussian(0.5, 1) distribution, and the

blue CDF to the smoothed Gaussian obtained by convolving the
previous two measures together. L. 93
A sequential visualization of the Chinese Restaurant Process, whe-

re the indexed 6 parameters represent tables and the smaller ‘or-
biting’ circles represent customers. The customers are labelled

by their arrivalorder. 94
A plot of the cumulant generating function recovered from the
pushforward of the CRP(10, 5) measure under a number-of-tables

query over the regiont € [—=5,5]. 100

Comparing the structures of a data model/likelihood with a pos-
terior. The likelihood is visualized at top; we condition on the
parameters 6, ¢, and v and propagate information forwards into
the unobserved data node z via the graph structure. The pos-
terior is visualized below and has an inverted conditional struc-
ture relative to the likelihood; here we condition on the data
and propagate information backwards through the graph to the

parameters.o Lo o 124

4.3

4.4

4.5

4.6

4.7

4.8

Kernel density estimate of the simple Gaussian mixture model
defined by ‘mixture 1 3’, constructed from 1000 samples drawn
via the forward-mode ‘rvar’ interpreter.
Cumulative distribution function (CDF) for the simple Gaussian
mixture model defined by ‘mixture 1 3’, recovered via the ‘cdf’
query composed with the forward-mode ‘measure’ interpreter. .
Histogram of 1000 samples from the inverse distribution of Ber-
noulli parameters when the model is conditioned on nine “True’
and three ‘False’ values.
Trace of 10000 iterations of the Metropolis-Hastings sampler over
the inverse distribution of Bernoulli parameters when the model
is conditioned on nine ‘“True’ and three ‘False’ values. The chain
moves as expected (making proposals from the prior).
A visualization of the core probabilistic structure of the simple
Gaussian mixture model, in terms of its AST. A probability p
is beta-distributed according to some supplied hyperparameters,
and then that probability is used to denote a Bernoulli(p)-dist-
ributed coin flip. The program branches according to the coin
flip, where each branch denotes a distinct Gaussian distribution.
The program then terminates at each branch via an implicit Dirac
distribution depending on that branch’s Gaussian.
A visualization of an execution trace of the Gaussian mixture
model. Each primitive probabilistic instruction from the base
functor is annotated with a data structure called ‘Node’ that stores
execution information like parameter space position, likelihood
value,and soon.
A visualization of an execution trace that has been duplicated
in a comonadic context. Each primitive probabilistic instruction
from the base functor becomes annotated with a view of the rest

of execution trace from that point forwards.

141

142

144

149

153

4.9

4.12

413

Positions of the mixing parameter p gathered from 1000 epochs
of a Markov chain running over executions of the ‘mixture 3 2’
model conditioned on some observations. The chain moves as
expected according to the perturbation function used (proposing
moves from the prior). oo L
Kernel density estimate of the inverse distribution of the mixing
parameter p gathered from 1000 epochs of a Markov chain run-
ning over executions of the ‘mixture 3 2’ model conditioned on
some observations. The density has the expected shape given the
beta(3, 2) prior and mostly-negative observations.
Jittered positions of the mixture component gathered from 1000
epochs of a Markov chain running over executions of the ‘mix-
ture 3 2’ model conditioned on some observations. The chain
tends to jump out of the rightmost component rapidly after en-
tering it.
Count of the positions of the mixture component gathered from
1000 epochs of a Markov chain running over executions of the
‘mixture 3 2° model conditioned on some observations. Most of
the time is spent in the leftmost component of the mixture. . . .
Positions of the mixing parameter p gathered from 1000 epochs
of a Markov chain running over executions of the ‘mixture 3
2" model conditioned on some observations, using an alternate
perturbation function. The chain moves as expected according
to the perturbation function used (proposing small, Gaussian-

distributed steps about its present location).

Contours of the Rosenbrock and log-Rosenbrock densities. The
density is anisotropic — most of the probability is concentrated

along a skinny, banana-shaped canyon.

165

166

168

212

53

54

55

5.6

57

5.8

59

Contours of the Himmelblau and log-Himmelblau densities. The
density has four distinct modes of probability that are well-sep-
arated from eachother. 0.
Contours of the Beale and log-Beale densities. The density has
two distinct modes of probability, each bending sharply along
twoasymptotes. Lo oo
Contours of the BNN and log-BNN densities. The density has

two large modes of probability over a correlated parameter space. 216

Floor-truncated effective sample size (ESS) by coordinate for ch-
ains driven by various transition operators over the Rosenbrock,
Himmelblau, Beale, and BNN densities.
Traces of Markov chains over the log-Rosenbrock density. Each
trace was taken for a total of 10000 primitive transitions, so the
‘mh-progressive’ and ‘custom’ traces contain less points (2000
and 3333 respectively). L.
Traces of Markov chains over the log-BNN density. Each trace
was taken for a total of 10000 primitive transitions, so the ‘mh-
progressive’ and ‘custom’ traces contain less points (2000 and
3333 respectively). Lo L
Traces of Markov chains over the log-Beale density. Each trace
was taken for a total of 10000 primitive transitions, so the ‘mh-
progressive’ and ‘custom’ traces contain less points (2000 and
3333 respectively). Note that the pure gradient-based algorithms
fail to locate the topmost mode of probability.
Traces of Markov chains over the log-Himmelblau density. Each
trace was taken for a total of 10000 primitive transitions, so the
‘mh-progressive’ and ‘custom’ traces contain less points (2000
and 3333 respectively). Note that all but one of the algorithms
fail to find more than one mode of probability, with the ‘custom’

transition alone locating three.

226

5.10 A trace of 2000 iterations of the annealingTransition operator on
the log-Himmelblau density. Note that it successfully finds all
four modes of probability. o L 231

10

Chapter 1

Thesis

The point is: what are you trying
to show? The point is: what is

your point?

Olin Shivers

Novel and useful domain-specific languages for solving problems in Bayesian
statistics can be embedded in statically-typed, purely-functional programming

languages.

This dissertation defends that thesis, developing an argument in support of it by
way of three chapters. Each chapter presents some conceptual issue or problem
in statistics and demonstrates how it can be solved by some feat of language en-
gineering; namely, embedding a limited domain-specific language for solving the
problem inside of a host language. The ideas in this dissertation are all imple-
mented using Haskell, probably the most popular and best-supported statically-

typed and purely-functional programming language.

This thesis is both inspired by and supports ongoing research in probabilistic pro-

11

gramming: the idea of using specialized programming languages, interpreters,
compilers, hardware, and other similar tools to do Bayesian statistics [Mans-
inghka, 2009]. In particular, this dissertation contributes primarily to research
in embedded probabilistic programming languages, which have the advantage
of being able to hijack many desirable features (parser, compiler infrastructure,

library and extension ecosystem, etc.) from their host language.

The primary contributions of this dissertation are:

 Novel probabilistic interpretations of the Giry monad’s algebraic struc-
ture. Most significantly, we characterize image measure by functorial
structure and product measure by applicative structure. The functorial
structure is demonstrated to be useful for transforming a measure’s sup-
port while preserving its density structure, and the applicative/product
measure structure is demonstrated to be useful for encoding independence

between measurable functions.

« A novel characterization of the Giry monad as a restricted continua-
tion monad. We implement a shallowly-embedded DSL for integration
by using a dual interpretation for probability measures, encoding them
as self-contained integration procedures that one can ‘query’ by integrat-
ing measurable functions against. We note that this language is struc-
turally equivalent to the ‘expectation monad’ of Ramsey and Pfeffer [2002]
since both are continuation-based encodings of the Giry monad. We de-
velop a number of queries — notably measure convolution and recovery
of moment/cumulant-generating and cumulative distribution functions

— over measures defined over varying supports.

+ A novel technique for embedding a statically-typed probabilistic pro-
gramming language in a purely functional language. We use the free
monad of a probabilistic base functor in order to define our embedded lan-

guage, giving us the same syntax as the language based on the Giry or

12

sampling monads, but with considerably more flexibility when it comes to

interpretation.

« A novel characterization of execution traces as cofree comonads. We
demonstrate that probabilistic programs encoded using the free monad
have a dual representation as execution traces under the cofree comonad,
which allows us to ‘move about’ in trace space and perturb a model’s in-
ternal parameters. We then implement a novel comonadic Markov Chain

Monte Carlo (MCMC) algorithm that makes use of this characterization.

+ A novel technique for statically encoding conditional independence of
terms in the embedded language. We use the free applicative functor in

order to capture applicative expressions in a structure-preserving way.

+ A novel technique for building custom transition operators for use in
Markov Chain Monte Carlo. Markov transition operators can be denoted
by a particular instance of the state monad such that familiar monadic com-
binators can be used to build composite transition operators from a set of

base, ’known-good’ primitives.

Each of the above techniques has been implemented in one or more Haskell li-

braries which are liberally licensed and available on Github.

The rest of this chapter describes how the dissertation is structured. Chapter
2 is a background chapter that takes pains to provide the minimum necessary
background required to understand the computer science concepts, Haskell ter-
minology, and programs introduced throughout the dissertation; it can likely be
used as a reference and flipped to when needed. Chapters 3, 4, and 5 present the

primary contributions.

13

1.1 Representing Probability Distributions

Chapter 3 explores much of the existing ground and discusses some fundamen-
tals of representing probability distributions in typed functional languages. It
presents the monadic structure of probability distributions, developed originally
in mathematics by Lawvere [1962] and Giry [1981] and then discussed seminally
with respect to functional programming by Ramsey and Pfeffer [2002] before

being importantly extended on by Park et al. [2008] and Scibior et al. [2015].

We develop the Giry monad from first principles, using it to characterize impor-
tant probabilistic semantics common to embedded monadic probabilistic pro-
gramming languages. We then implement the Giry monad using a restricted
continuation monad through which the thorny details of preserving measura-
bility can be abstracted away. This representation proves to be interesting and
accurately captures important probabilistic semantics, but its prohibitive com-
putational complexity and some issues around implementing integration limits

its use in practice.

1.2 Representing Structured Probabilistic Models

We start by describing the well-known sampling monad and then note that it
shares the same monadic structure as the Giry monad from Chapter 3. These
constructions, however, are each ‘lossy’ in some sense; interpreting a distribution
and producing some output destroys the internal structure of the distribution

being interpreted by collapsing it to a point.

Chapter 4 presents a novel way to keep the same lightweight syntax used in both
the measure and sampling function-based DSLs, but also preserve the model’s

internal structure. In particular, the structure-preserving concept of algebraic

14

freeness is exploited to reify a distribution as a data structure that can be tra-
versed and analyzed to support almost arbitrary interpretation. The result is a
deeply-embedded language for working with structured probabilistic models that
are more amenable to inference. Numerous useful interpreters are described for
working with these models. Sharing the same monadic structure captured by
the free monad, each of the measure and sampling function-based languages can
almost trivially be re-used and grafted onto the structure-preserving embedded

language.

1.3 Declarative Markov Chains

In similar fashion to the previous chapters, Chapter 5 demonstrates that the
Markov transition operators used in MCMC have a simple monadic structure.
Additionally they can be combined in a way that preserves existing properties

that are important for MCMC — Markovness, stationarity, and reversibility.

These properties are used to implement transition operators as monadic state
transitions in a simple shallowly-embedded language for building composite tran-
sition operators. The language — implemented as a library called declarative [To-
bin, 2013a] — can be used to build transition operators for any ‘single-particle’

Markov chain.

The declarative language includes transition operators corresponding to the Met-
ropolis-Hastings, slice sampling [Neal, 2003], Hamiltonian Monte Carlo (HMC)
[Neal, 2011], Metropolis-adjusted Langevin Diffusion (MALA), and No U-Turn
Sampler (NUTS) [Hoffman and Gelman, 2011] algorithms. These can be fruitfully
assembled to design compound transition operators that balance exploratory
power with computational expense, for example by interleaving a large number
of cheap Metropolis transitions with the occasional computationally expensive,

gradient-based HMC transition. Examples are provided over a number of target

15

functions.

1.4 Scope of Formality

The DSLs developed in support of the thesis make a number of guarantees about
the behaviour of programs written in them. What follows is a brief summary
of the scope of formality aimed at and achieved in the languages presented in

Chapters 3-5.

The embedded languages developed in this dissertation are in general constructed

around:

« a particular abstract data type or types,

« a characterization of structure of those types, by way of e.g. functors or

monads, and

« a number of evaluation or query functions.

The scope of formality is thus to demonstrate that the data type or types we
employ accurately capture some fundamental probabilistic construct, that the
categorical structure of the probabilistic construct is characterized accurately,
and that the corresponding evaluation or query functions are well-motivated

and correct.

Each chapter presents some statistical construct that is first formalized mathe-
matically, and then distilled into some concise data type and functions for eval-
uating values of it. We then use the categorical structure of the type to charac-
terize some corresponding probabilistic structure, the result of which is a set of
combinators for manipulating values of the type in a law-abiding and semantics-

preserving fashion. These constitute our embedded DSLs.

16

The mathematical formalizations used are concrete to a degree of rigour that is
likely satisfactory to the academic or practicing statistician. When translating
to code, we either directly prove, or cite some existing proof, that any claimed
categorical structure holds as described and required. The embedded languages
presented here are thus demonstrated to be correct at the level of formality de-
scribed above. Other degrees of formality, whatever they might be, are deemed

out of scope.

Various well-motivated supplementary functions — e.g. probability density func-
tion implementations, primitive Markov transition functions, pure pseudoran-
dom number generators — are not treated with the same formality. The ratio-
nale is that even if there were an error in the implementation of any of these
accessories, it would not invalidate the correctness of the embedded languages
at the level of formality described above. We do however employ a variety of
common-sense and easily-verified sanity tests throughout the dissertation, in
order to both illustrate the languages and also provide additional assurance that

the implementations are correct.

1.5 Wrapping up

Chapter 6 concludes the dissertation by providing a unifying summary, with at-
tention to arguments made in support of the thesis. Appendix A includes code
for one of the constructions developed in Chapter 4, and Appendix B includes

code for the primitive transition operators described in Chapter 5.

Libraries and code developed in support of this thesis are summarized alphabet-

ically below, along with URLs to their respective Github repositories:

+ deanie: An embedded probabilistic programming language.

http://github.com/jtobin/deanie

17

http://github.com/jtobin/deanie

declarative: DIY Markov chains.
http://github.com/jtobin/declarative

flat-mcmec: Painless general-purpose sampling.

http://github.com/jtobin/flat-mcmc

hasty-hamiltonian: Speedy traversal through parameter space.

http://github.com/jtobin/hasty-hamiltonian

hnuts: Automatic gradient-based sampling.

http://github.com/jtobin/hnuts

lazy-langevin: Gradient-based diffusion.

http://github.com/jtobin/lazy-1langevin

mcmec-types: Common types for implementing MCMC algorithms.
https://github.com/jtobin/mcmc-types

measurable: A shallowly-embedded DSL for basic measure wrangling.

http://github.com/jtobin/measurable

mighty-metropolis: The Metropolis sampling algorithm.
http://github.com/jtobin/mighty-metropolis

mwc-probability: Sampling function-based probability distributions.
http://github.com/jtobin/mwc-probability

speedy-slice: Speedy slice sampling.
http://github.com/jtobin/speedy-slice

18

http://github.com/jtobin/declarative
http://github.com/jtobin/flat-mcmc
http://github.com/jtobin/hasty-hamiltonian
http://github.com/jtobin/hnuts
http://github.com/jtobin/lazy-langevin
https://github.com/jtobin/mcmc-types
http://github.com/jtobin/measurable
http://github.com/jtobin/mighty-metropolis
http://github.com/jtobin/mwc-probability
http://github.com/jtobin/speedy-slice

Chapter 2

Language Engineering in Haskell

A monad is just a monoid in the
category of endofunctors, what’s

the problem?

Philip Wadler (attributed)

2.1 Abstract and Contributions

This chapter provides background on important concepts in typed functional

programming, as well as an introduction to Haskell and its syntax.

Domain-specific languages and typed functional programming are undoubtedly
esoteric topics amongst statisticians. This chapter focuses on the concepts of al-
gebraic data types, important typeclasses, and how to use these ideas to define
embedded domain specific languages (EDSLs) that can be used within a host lan-
guage like Haskell. Special attention is paid to the monad typeclass — a class

of data structures with particular characteristics that can be used to denote and

19

enforce useful probabilistic semantics. Monads are demonstrated to be a useful
foundational choice for representing distributions in embedded languages, with
emphasis on the useful composition and guarantee of strong type safety they pro-

vide.

Along the way, we build up a toy shallowly-embedded domain specific language

for representing and manipulating discrete probability distributions.

2.2 Motivation

The term ‘probability distribution’ is in practice somewhat ambiguous. A proba-
bility distribution is an abstract concept that can be distinctly characterized by a
variety of concrete representations. Canonically probability and distributions are
typically defined in terms of measures, but random variables, probability density
functions, characteristic functions, cumulative distribution functions, etc. are

used to represent distributions, depending on the problem under consideration.

Probably the most common representation in applied work is the probability
density or mass function: a measurable function f from some support 2 to R
such that fQ fdp = 1 for an appropriate measure p. This is a useful representa-
tion for many common statistical tasks, namely for calculating probabilities and

expectations by integrating over it.

When it comes to representing distributions on computers we’re typically inter-
ested in doing all sorts of things with them, and the density function represen-

tation can be unsatisfying for at least two reasons.

First, frequently one doesn’t actually wish to calculate probabilities and expec-
tations explicitly. Instead, another characterization — like sampling functions —

may be more useful, either for simulation or other approximate work.

20

But second — and more importantly — it is not necessarily easy to encode the
laws of this representation in any consistent way. For example, one might wish
to ensure that given two density functions f and g, the two can be combined or
composed in some sense to form a function / that is also a valid density func-
tion for some distribution. It’s not clear how to enforce this for all valid density

functions one might want to consider.

In particular, composition of distributions is integral to applied Bayesian statis-
tics. Typically we are interested in forming some probabilistic model for some
phenomenon by combining distributions together in some hierarchical struc-
ture. Indeed, a hierarchical Bayesian model is nothing more than a collection of
probability distributions composed together in a particular, consistent manner.
To express general problems of interest to Bayesian statistics it is thus desirable
to have not only a well-defined representation for probability distributions, but
also a well-defined method for manipulating them or otherwise putting them

together.

To get around the first problem there is the ‘kitchen sink’ approach to representa-
tion, in which one represents a probability distribution by a unified bag or object
of individual characterizations: sampling functions, density functions, cumula-
tive density functions, and so on. This approach is effective for some applications
— note the R package distr [Ruckdeschel et al., 2006], for example — but it still suf-
fers from the problem of enforcing well-defined composition of distributions. An
object representation in the ‘object-oriented’ sense does not immediately expose
any opportunities for combining or composing general distributions together
such that they are guaranteed to obey certain desirable laws. Not only that, but
any definition of composition must be implemented individually for each charac-
terization, and there is typically no guarantee that the composition is consistent

across representations in any sense.

So what is desirable is to go a step further — to encode probability distributions by

way of some consistent data structure (as in the kitchen sink approach, perhaps),

21

but also define rigorous and exclusive ways by which they can be manipulated
and composed together in a well-defined way. The ideal case would be to specify
a general framework for encoding varied representations of probability distribu-
tions, such that any given representation is guaranteed to obey certain important

laws.

This chapter develops such a representation.

2.2.1 Domain Specific Languages and Haskell

The combination of data structure and facilities for working with it constitute
the basics of a domain-specific language (DSL) — a collection of object repre-
sentations, combinators for working with them, and functionality for interact-
ing with or querying them. This dissertation discusses building, manipulating,
and composing distributions at the language level, such that probability distri-
butions (and, later, related concepts) are treated as fundamental ‘first-class citi-
zens’ with supporting frameworks built around them. It demonstrates that such
languages can be particularly useful for formulating and solving problems in

Bayesian statistics.

DSLs are useful tools in that they grant a user significant power to express prob-
lems within some domain, while also significantly limiting the expressiveness
of the language precisely to that domain. This limited scope makes the language
easier to use, implement, and interpret: a domain-specific language such as SQL’,
for example, has no need to implement general facilities for making exotic net-
work calls (or indeed, implementing a language for probability distributions). It

focuses entirely on the domain of building structured query expressions.

DSLs also tend to be declarative, in that the programmer typically specifies ‘what

something is’ rather than ‘how to do it Queries in SQL are declarative, for

'A family of popular database querying languages.

22

example:

SELECT columns FROM table WHERE predicate

The query describes exactly what is desired, rather than how the database’s in-
dexes should be resolved to extract the corresponding data. This declarative em-
phasis is part of what makes DSLs work; users of the language can express their
intents, without needing to provide the gory details of how they are achieved. A
well-designed DSL allows users to formulate and solve problems in their domain

at a relatively high level of abstraction.

DSLs have already proven themselves useful in Bayesian statistics in particular.
BUGS [Lunn et al., 2000], JAGS [Plummer, 2015a], and Stan [Stan, 2013] are three
popular limited languages for building Bayesian models and performing infer-
ence on them. The recent increased research effort in probabilistic programming
has also led to the development of various other experimental languages, includ-

ing Hakaru [Hakaru, 2014] and Venture [Mansinghka et al., 2014].

A DSL can be implemented on its own, with a standalone compiler and toolchain.
But it can also be implemented inside some other host language, a technique
called embedding. By using a host language to embed the DSL, one reaps a num-
ber of benefits, namely that the existing compiler, toolchain, and library ecosys-
tem of the host language can be used in tandem with the embedded language.
Implementing an industrial quality standalone compiler can be a demanding task,
so recycling an existing compiler infrastructure is often desirable. An embedded
DSL, or EDSL, typically has a lower startup cost than implementing a compiler
for a standalone language. There are downsides as well — error messages in
EDSLs must rely heavily on the host language, for example — but they are par-

ticularly useful for smaller, minimalist-style implementations.

Haskell [Marlow (editor), 2010] is a particularly suitable host language for EDSLs

[Gill, 2014]. It has a sophisticated and well-developed compiler infrastructure in

23

the Glasgow Haskell Compiler, or GHC, and a wealth of general-purpose libraries
available in its ecosystem. There exist robust tools for: building, packaging, and
distributing libraries; benchmarking and profiling runtime execution; network

programming; parallel and concurrent programming, and so on.

Haskell is a purely-functional programming language. To tackle the last part
of that definition first: functional programming is a programming paradigm in
which the central computational element is the evaluation of functions or expres-
sions. This can be contrasted to imperative programming, in which the central
computational elements are statements that change a program’s internal state.
Common functional programming languages include Lisp, Erlang, and the ML
family of languages, while common imperative languages include C, C++, and

Java. Most languages contain at least limited support for both paradigms.

Imperative languages rely on mutation or destructive updating for control flow
and many calculations. For example, a simple ‘for’ loop consists of a single piece
of mutable data — a counter — that is repeatedly mutated to perform some overall
calculation. Most existing functional languages, such as Lisp and the ML family,

also permit (and make use of) destructive updates.

A function contains a side effect if it modifies some program state in addition to
returning some value. Side effects can be common in programs written in C, Java,
Python, R, and so on, where global variables — variables that are in the global
lexical scope of a program — tend to find heavy use. For example, a common
idiom in statistical work is to use a global ‘number of accepts’ variable for keeping
track of proposals accepted while running an MCMC routine. Typically the same
function that accepts a proposed move in the chain also increments the counter,

performing a side effect.

A purely functional language is characterised by a lack of language support for
both ‘unmanaged’ mutation and side effects. In a purely functional language,

functions may only return a value, and all data is immutable. A pure function

24

— like a typical function one deals with in maths — has the property that it will
always return the same value when given the same inputs. Effects and mutation
are still possible in purely-functional languages, but they must be managed in a
particular way. A program that performs effects must in some sense be explicit

about what effects it performs (we’ll see examples of this later in the chapter).

But most importantly for the topic at hand, Haskell supports a number of desir-
able language constructs for doing ‘language engineering’; the ability to write
higher-order functions, a strong system of algebraic data types, support for para-
metric polymorphism, and useful, generic typeclasses constitute a powerful set of

tools for building compilers or constructing EDSLs.

The following sections outline these techniques in some detail, providing a brief
introduction to concepts in programming languages, functional programming,
and type systems, in addition to an overview of Haskell syntax. For a rigor-
ous and comprehensive treatment of types and programming languages, see the
excellent and seminal Pierce [2002]. For an introduction to programming in

Haskell, Lipovaca [2011] is a popular, readable, and enjoyable text.

2.3 Algebraic Data Types

2.3.1 Abstract Terms and Types

A programming language is typically defined by its formal grammar. The gram-
mar specifies the terms (or expressions) of a language — the collection of legal
syntactic constructs that can be expressed in the language proper. Consider a
very simple language for adding integers, for example. It can be defined by the
following grammar, denoted in Backus-Naur Form, or BNF [Grune and Jacobs,

2008]:

25

<addition> ::= 1lit <int>

| add <addition> <addition>

This grammar (where integers are taken to be primitive) is a specification of the
language — though it is not a total specification since it does not define semantics.
Terms in this language are either literals, represented by ‘lit <int>’, or the addition
of terms, represented by ‘add <addition> <addition>". A valid program in this
language could be ‘add (lit 1) (lit 1)’, representing the addition of two literals, or

even just something like the trivial ‘lit o’.

Like all nontrivial grammars, this one has a familiar recursive structure that is
defined in terms of itself. The structure of ‘addition’ terms is such that we can

write programs like:

add (add (lit 1) (add (lit 1) (lit @)))
(add (1lit @) (add (lit 1) (1it 2)))

in which ‘add’ expressions can contain other ‘add’ subexpressions.

A type is a metavariable for tagging terms in a programming language. Types T’
are typically assigned to terms ¢ via a binary relation ‘., so that we can denote
‘term ¢ has type 1” by t : T. Types are important for the static analysis of pro-
gramming languages; by analyzing types, we can rule out certain pathological
programs without ever attempting to evaluate them [Pierce, 2002]. As an exam-

ple, consider adding some literal Boolean terms to the toy language for addition

from above:
<augmented> ::= lit <lit>
| add <augmented> <augmented>
<lit> ::= true

26

| false

| <int>

In this language it is possible to write programs like ‘add (lit true) (lit 1)’ which
may not have any meaningful semantics. By annotating terms with types, we
can rule these programs out statically, i.e. without needing to actually evaluate

them. We can define a set of types:

<T> ::= Boolean

| Integer

as well as a set of typing relations:

lit true : Boolean lit false : Boolean lit <int> : Integer

to : Integer ¢; : Integer

addtot, : Integer

where the bottom expression reads “if the terms ¢, and ¢; both have type Integer,
then the term ‘add ¢, ¢;” also has type Integer”. Any expression for which a type
cannot be derived by these relations — for example ‘add ¢ t3° for ¢5 : Boolean
and 3 : Int — has no meaningful semantics in the language. An algorithm that
verifies a set of typing relations is called a type checker, and serves to rule out
invalid programs without needing to evaluate them (typically when the program
is compiled). A type checker will typically report a type error for an expression

that is not well-typed.

Types are regularly (if informally) used in mathematical specifications as well,
usually to denote the set that an element belongs to, or the sets that make up
the domain and range (or codomain) of a function. Consider a one-dimensional
Gaussian density f, for example; the statement Vx € R. f(xz) € R ascribes a
typing relation that can be interpreted as ‘for any x with type R, f(x) has type
R’, where the types denote the sets that the each term belongs to. Equivalently,

27

we could write f : R — R to denote that f takes an argument having type R

and returns an value having the same type.

2.3.2 Terms and Types in Haskell

Haskell is a statically typed programming language: just like the previous ab-
stract treatment, every term in Haskell has a type, and these types are checked
statically — before any program is actually evaluated. To ascribe types to terms,

Haskell expressions are typically annotated like so:

add :: Int -> Int -> Int
add ab=a+b

The top line is a type signature, indicating that the ‘add’ function has two argu-
ments, each of type ‘Int’, and that it returns a value with type ‘Int’. Haskell has
a Hindley-Milner or Damas-Milner type system [Milner, 1978] that is capable of
inferring types from arbitrary expressions. As a result, type signatures like the
above are rarely required, but are considered good practice to add to top level
definitions. We can ask for the inferred type of arbitrary Haskell expressions

from within GHCI, the standard Haskell interpreter, using “:t’:

> :t ”hello”
”hello” :: String

An algebraic data type (ADT) is a type built from other types using the two logical
algebraic operations ‘and’ and ‘or’. ADTs are pervasive in Haskell, and prove to
be useful for modelling generic composite types. An ADT is declared by the ‘data’
keyword; the following ADT declaration defines a type for the toy ‘addition’

language from Section 2.3.1:

28

data Addition =
Lit Int
| Add Addition Addition

Note that it reads almost exactly like the BNF for the grammar presented previ-
ously. This ADT is constructed using both a logical ‘or’ — denoted by the pipe
operator ‘|" — as well as a several logical ‘and’ operations denoted by whitespace.
It can be read as ‘the Addition type is defined by either the data constructor Lit
and the type constructor Int or the data constructor Add and the type constructor
Addition and the type constructor Addition’. This ADT is also defined recursively,

just as was the case in the formal grammars from Section 2.3.1.

Due to their algebraic properties, types formed from logical ‘or’ operators are of-

ten called sum types, while types formed from logical ‘ands’ are known as product

types.

2.3.3 A Proto-Representation For Probability Distributions

As an intermission of sorts, we can demonstrate that we’re able to define prob-
ability distributions on values having sum or product types. In the most trivial
cases we can take a type like ‘Double’ or ‘Int’ and define a probability density or
mass function over its values respectively, but the structure of more general al-
gebraic types pose no difficulty either. Consider the following ‘Group’ sum type
corresponding to a collection of groups, as well as a function corresponding to a

categorical distribution over values with that type:

data Group = A | B | C

categorical :: Group -> Double

categorical A = 0.1

29

0.7
0.2

categorical B

categorical C

The ‘categorical’ mass function takes values of type ‘Group’ and assigns to them a
probability, represented by the ‘Double’ numeric type that corresponds to double-

precision floating point numbers. For a product type, we can consider:

data R3 = R3 Double Double Double

standardGaussian3d :: R3 -> Double
standardGaussian3d (R3 x y z) = gauss x * gauss y * gauss z where

gauss a = 1 / sqrt (2 * pi) * exp (negate Ca A 2) / 2)

Here ‘R3’ corresponds to R?, and ‘standardGaussian3d’ assigns a standard nor-
mal density to values with type ‘R3’. Product types correspond to Cartesian prod-

ucts of types, which have a natural mapping to values over n-dimensional spaces.

We can also define more complex distributions over general ADTs that consist
of both sums and products. Consider the following type that assigns probability

density over values in a union space:

data Union =
A R3
| B R3

density :: Union -> Double

density (A r3) = 0.9 * standardGaussian3d r3
density (B r3) = 0.1 * standardGaussian3d r3

Notice that the algebraic properties of ‘Union’ mean that ‘density’ transcribes

the laws of probability verbatim; for B3 € R?® we have that P(A N R3) =

30

P(A)P(R3|A), P(BN Rs) = P(B)P(Rs|B), and P(Union) = P(A) + P(B),

since the intersection of A and B is empty.

Again, these examples fall back on the method of representing distributions via
densities. We can ascribe distributions to values of various types using densities,
but we have not gone much further towards building a language for working

with them more generally.

2.4 Parametric Polymorphism and Typeclasses

All the algebraic data types we’ve seen thus far have been built out of interpreted
base types [Pierce, 2002]; primitive, concrete types like ‘Int’ or ‘Bool’ put together
as abstract sums and products. We can also define more general parameterized

types which make use of uninterpreted type variables.

For example, we could create the following ADT that ‘holds’ two other general

types denoted by type variables:
data Pair a b = Pair a b

Here the type variables a and b are used to denote arbitrary other types. Note
that they appear on either side of the ‘equals’ operator in the data declaration,
which can be read as ‘for every a and b the type Pair a b is defined by the data

constructor Pair, the type constructor a, and the type constructor b’.

The type constructor ‘Pair’ defines an infinite family of types ‘Pair a b’. For ex-

ample, the following values x and y have different types constructed by ‘Pair’:

> let x = Pair (1 :: Int) (hello” :: String)

> 1t X

31

x :: Pair Int String

> let y = Pair x True

>ty

y :: Pair (Pair Int String) Bool

The ‘Pair a b’ type is said to be polymorphic, and by virtue of having type parame-
ters a and b it is an example of parametric polymorphism. A type system featuring
parametric polymorphism is very useful to have in a statically-typed program-
ming language: it enables generic programming, in that a function written once
can work over many types. For example, consider the following function that

plucks the first element out of a ‘Pair’:

pluck :: Pair ab -> a

pluck (Pair x _) = x

The ‘pluck’ function can be used for any value having type Pair a b’, no mat-
ter what @ and b are. There is no need to write one ‘pluck’ function that works
for the ‘Pair Int Double’ type, another for the ‘Pair Bool String’ type, and so
on. Parametricity enables various ‘free theorems’ that must always hold for any
implementation of a given function [Wadler, 1989]. Consider again the type sig-

nature for ‘pluck’ on its own, for example:

pluck :: Pair a b -> a

The general nature of the polymorphic type constrains the possible legal imple-
mentations of the function so much so that it can only do a single thing: return
the first value of the ‘Pair’. There are no other legal implementations that will

pass a type checker.”

*This disregards so-called ‘bottom’ values whose details are unnecessary here.

32

It is useful to be able to restrict the type parameters of ‘Pair a 0’ in a function
like ‘pluck’ to belong only to certain collections of types, called typeclasses. By
restricting the allowable types of a or b, for example, we expand the number of

legal implementations of ‘pluck’, typically by quite a large amount.

A typeclass is a collection of types that must all implement some particular func-
tions. A simple example is the ‘Eq’ typeclass, which allows values of a type in

that class to be compared for equality:

class Eq a where
(==) :: a ->a -> Bool
(/=) :: a -> a -> Bool

The above typeclass definition states that for any type a that is a member of the
‘Eq’ typeclass, values having that type can be compared for equality. Note that
this was not possible for values having type ‘Group’ defined in Section 2.3.3. If
we try to compare equality of the values ‘A’ and ‘B’ in GHC], for example, we

receive the following error:

> A ==B

)

No instance for (Eq Group) arising from a use of ‘==

In the expression: A == B

We can redefine ‘Group’ and automatically derive an instance of the ‘Eq’ type-

class for it as follows:

data Group = A | B | C

deriving Eq

This lets us compare values for equality as one would expect:

33

> A ==8B

False

There are many important standard typeclasses in Haskell, with ‘Eq’ just being
a single example. Other important typeclasses include ‘Ord’, for types of values
that have a well-defined ordering, or ‘Show’, for types of values that have some

sort of textual representation.

The following subsections describe three foundational typeclasses that we will
throughout the dissertation: the ‘Functor’, ‘Applicative’, and ‘Monad’ typeclasses.
We will derive and demonstrate some properties of these structures more for-

mally in Chapter 3, but here we just present a more gentle introduction.

2.4.1 The Functor Typeclass

The ‘Functor’ typeclass represents a class of types that can be ‘mapped over’
in some sense. Instances of ‘Functor’ (called functors) must implement a single

function — called ‘fmap’ — which is defined as follows:

class Functor f where
fmap :: (a ->b) ->fa->fb

‘fmap’ is an example of a higher-order function. It has two arguments: a function
of type a — b and a value of type fa. Intuitively, the functor f can be pictured as
a container of sorts that holds elements of type a. ‘fmap’ applies its first argument
— the function of type a — b — to the elements of the container, resulting in a
value of type fb. The ‘shape’ of the container is unchanged, but it now holds
elements of type b instead of a. Instances of the Functor typeclass must satisfy
the following two laws (the ‘functor laws’), which can’t be automatically verified

by the compiler:

34

fmap id = id -- identity

fmap (g . h) = fmap g . fmap h -- homomorphism

As an example, consider one of the most fundamental data types in Haskell, the

list. It can be defined abstractly as

data List a =
Prepend a (List a)
| Empty
deriving (Eq, Show)

A list is a polymorphic type that is either empty or is the prepending of a value
of type a onto another list. Thus the following examples are lists of type Va List
a’, ‘List Int’, and ‘List Char’ respectively:

> let foo = Empty
> let bar = Prepend 1 Empty
> let baz = Prepend ’h’ (Prepend ’i’ (Prepend ’!’ Empty))

The lists are containers that each hold values of a certain type. We can define a

‘Functor’ instance for generic lists as follows:

instance Functor List where
fmap _ Empty = Empty
fmap f (Prepend x 1) = Prepend (f x) (fmap f 1)

Intuitively, ‘fmap’ applies the function ‘f’ to each element of the list. It does so
by applying ‘f’ directly to the head of the list and recursively calling itself on the

list’s tail.

Since the functor laws can’t be verified by the compiler, we can use equational
reasoning to verify them ourselves. For the above instance, for example, we can
establish that:

35

fmap id Empty
= Empty

fmap id (Prepend x 1)
Prepend (id x) (fmap id 1)
Prepend x (fmap id 1)

= Prepend x 1

so that ‘fmap id = id’, verifying the first functor law. To verify the homomorphism

law, we have:

fmap (f . g) Empty
= Empty

(fmap f . fmap g) (Prepend x 1)

fmap f (fmap g (Prepend x 1))

fmap f (Prepend (g x) (fmap g 1))

Prepend (f (g x)) (fmap f (fmap g 1))
Prepend ((f . g) x) ((fmap f . fmap g) 1)
Prepend ((f . g) x) (fmap (f . g) 1)

fmap (f . g) (Prepend x 1)

so that ‘fmap f. fmap g = fmap (f. g)’, as required. We won’t verify any other
laws in this chapter, but make use of the equational reasoning technique in the

sequel.

The functor instance enables us to use ‘fmap’ to change the contents of a given
list without changing the overall structure of the list itself. We can transform the

‘bar’ and ‘baz’ examples from the previous block as follows:

> fmap (+ 1) bar
Prepend 2 Empty

36

>let fala=="h"=11a=="71" =2 | otherwise = 3
> fmap f baz
Prepend 1 (Prepend 2 (Prepend 3 Empty))

In practice, lists are of such importance in Haskell that they have a special built-
in syntax denoted by square brackets, ‘[like”, this”]’. Additionally, Haskell’s
built-in String type is defined in terms of lists of characters, such that we can

write the following in place of the previous definition for ‘bar’:

> let quux = ”hi!”
> fmap f quux
[1, 2, 3]

2.4.2 Another Proto-Representation

That a functor’s ‘contents’ can be changed while leaving its overall structure

invariant is a very useful property.

As an example closer to the topic at hand, consider the following container type

that can be used to represent a discrete probability distribution:

data Distribution a = Distribution [(a, Rational)]

deriving Show

The ‘Distribution a’ type is simply a wrapper around a list of pairs containing
a value of type a and a rational number. We can use it to implement arbi-
trary categorical distributions. One of the simplest examples is the following
Bernoulli(2/3) distribution:

> let bernoulli = Distribution [(@, 1 / 3), (1, 2 / 3)]

37

The type of ‘bernoulli’ here is ‘Distribution Int’, indicating that it is a probability
distribution over the integers. The following typeclass instance demonstrates

that ‘Distribution’ is a functor:

instance Functor Distribution where
fmap f (Distribution vs) = Distribution (fmap g vs) where
g (v, p) =(fv, p

We can exploit the fact that ‘Distribution’ is a functor in order to transform its
support while leaving its mass structure invariant. For example, we can trans-

form the support from {0, 1} to the Boolean domain { False, True}:

> let convert x | x == @ = False | otherwise = True
> fmap convert bernoulli

Distribution [(False, 1 % 3), (True, 2 % 3)]

> :t fmap convert bernoulli

Distribution Bool

The invariance property doesn’t just hold for probability distributions of type
‘Distribution Int’: parametricity and the Functor instance ensure the free theo-
rem that it holds for any type a. That is, we can use ‘fmap’ to transform the sup-
port of any valid probability distribution represented by this type and be guar-
anteed that we receive a valid probability distribution in return — completely

independent of whatever that support may be.

The functor instance will ensure that the correct density structure is preserved

even under ‘collapsing’ transformations to the support. Consider the distribution
example = Distribution [(0, 1 / 3), (1, 1/ 3), (2, 1 / 3)]

for example, and then consider using ‘fmap’ to apply the following function to
it:

38

collapse x = if x <= 1 then 1 else 2

Clearly ‘collapse’ will decrease the size of the support by one element. However

the corresponding mass structure is preserved as expected:

> fmap collapse example
Distribution [(1, 1 % 3), (1, 1 % 3), (2, 1 % 3)]

2.4.3 'The Applicative Typeclass

Closely related to a functor is an applicative functor (or just applicative), which is
what instances of the ‘Applicative’ typeclass are called. The typeclass itself can
be defined as follows:

class Applicative f where
pure :: a ->f a
(<*>) :: f((a->b) >fa->fb

Instances of ‘Applicative’ implement two functions: ‘pure’, and the infix operator
‘(<*>)’, which we will alias as ‘apply’ in this dissertation. The ‘pure’ function
takes a value of type a and simply puts it in the applicative, yielding a value of
type fa. The ‘apply’ function is much like ‘fmap’ from the Functor typeclass;
it takes as arguments function from a — b itself wrapped in an applicative f,
plus a value of type fa, and returns a value of type fb. Every applicative functor
is itself a functor by construction, as ‘fmap f u’ is equivalent to ‘pure f <*> u’
[McBride and Paterson, 2008]. Instances of the Applicative typeclass must satisfy

the following laws, called the ‘applicative laws’:

pure id <*> x = X -- identity

pure f <*> pure x pure (f x) -- homomorphism

39

f <*> pure x pure (\g -> g x) <*> f -- interchange

pure (.) <*> f <*> g <*> x f <*> (g <*> x) -- composition

To illustrate applicative functors, consider Haskell’s ‘Maybe’ data type, defined

as follows:
data Maybe a =
Just a
| Nothing

‘Maybe’ has the following Applicative instance:

instance Applicative Maybe where

pure X = Just x
Just f <*> Just x = Just (f x)
_<k> = Nothing

We can use it to apply functions wrapped in ‘Just’ constructors to other values
wrapped in ‘Just’ constructors. The following demonstrates this using Haskell’s

built-in ‘succ’ function, which returns the successor of a provider value:

> let f = Just succ
> f <*> Just 0

Just 1

> f <*> Nothing
Nothing

Instances of Applicative also have a function ‘liftA2’ defined for them by default,

where ‘liftA2’ is a little like ‘apply’ but for functions with two arguments:

1iftA2 :: Applicative f => (a -> b ->¢c) ->fa ->fb ->fc
1iftA2 f a b = fmap f <*> a <*> b

40

Applicative functors can be used to implement a different typeclass instance:
namely, the ‘Num’ typeclass, which provides the ring operations of addition,

subtraction, and multiplication. The minimal definition of ‘Num’ is as follows:

instance Num a where

+) it a->a->a
() it a->a->a
™ cva->a->a
abs (i a-—>a
signum (. a->a
fromInteger :: Integer -> a

Any applicative functor over a type a, where a itself is an instance of ‘Num’ can

automatically be made an instance of ‘Num’, as follows:

instance (Num a, Applicative f) => Num (f a) where

) = LiftA2 (+)

) = LiftA2 (-)

™) = LiftA2 (*)

abs = fmap abs

signum = fmap signum
fromInteger = pure . fromInteger

Now, return to our example probability distribution type defined in Section 2.4.1.
It is an instance of ‘Applicative’, though we will delay providing its implemen-
tation until the next section. By virtue of being an applicative functor, the ‘Dis-
tribution’ type can automatically be made an instance of ‘Num’ whenever its

support is itself a numeric type.

With a ‘Num’ instance in play, we can ‘add’ any two such probability distribu-

tions together, like so:

41

> let bernoulli Distribution [(@, 1 / 3), (1, 2 / 3)]
Distribution [(@, 1 / 5), (1, 2/ 5), (2, 2 / 5)]

bernoulli + discrete

let discrete

v

> let convolved
> convolved
Distribution [
@, 1% 15), (1, 2 % 15
, (2, 2% 15, (1, 2 % 15)
, (2, 4% 15), (3, 4 % 15)
]

As we’ll see in Chapter 3, abstract addition in this context corresponds to a con-
volution of probability distributions. The resulting distribution’s support is ex-
panded beyond that of ‘bernoulli’ or ‘discrete’ to cover an additional point, 3, and
its mass structure is reweighted appropriately. The resulting distribution has the

majority of its mass (6/15) at the point 2.

Note that while ‘fmap’ always leaves a Functor’s structure invariant, ‘apply’ is
able to alter it. We used ‘fmap’ in Section 2.4.1 to change a distribution’s support
without touching its mass structure, but ‘apply’ can alter both the support and the
mass structure. This phenomenon is known as an effect [McBride and Paterson,

2008].

Like the case of the Functor instance, values of any probability distribution type
defined so as to implement an Applicative instance can be convolved with other
distributions of the same type for free. What’s more, abstract notions of subtrac-
tion and multiplication are also provided by the ‘Num’ typeclass, where the be-
haviour of these operators correspond to their equivalents on random variables.
For example, if X ~ fandY ~ g arerandom variables,then X —Y ~ f—g
and XY ~ fg.

Like the corresponding case for ‘fmap’, this property is guaranteed to hold for

any probability distribution that is also an applicative functor; convolution (and

42

friends) of well-defined probability distributions is guaranteed to return other

well-defined probability distributions.

2.4.4 'The Monad Typeclass

Haskell is well-known for its ‘Monad’ typeclass, which proves to be notoriously
difficult for many newcomers to understand. Instances of ‘Monad’ (called mon-
ads) are in some sense Ttestricted’ applicative functors; every monad is an ap-
plicative functor, but the converse is not necessarily true. The typeclass is de-

fined as follows:

class Monad m where
return :: a ->ma

G>=) :ma->Ca->mb) ->mb

Monads must implement two functions: ‘return’, which functions identically to
Applicative’s ‘pure’, and the operator 3=, called bind. Like the Functor and Ap-

plicative typeclasses, instances of Monad must satisfy the following monad laws:

return x >>=f = f x -- left-identity
m >>= return =m -- right-identity
(m>>=f) >>=g =m>>= \x -> (f x >>= g) -- associativity

The ‘bind’ operator is what distinguishes a monad from an applicative functor.
In the case of an applicative, ‘apply’ sequences effectful computations together
in a context-free manner. The monadic bind operator on the other hand permits
effectful computations to be combined in a context-sensitive manner, such that
the result of one effect can determine whether or not to apply another. The bind
operator gets its namesake as it ‘binds’ the result of an effectful or structure-

altering computation to a name that can be referred to later.

43

The ‘Maybe’ type introduced in the previous section is also a monad, and it has

the following typeclass instance:

instance Monad Maybe where

return = Just
Just x >>=f = f x
Nothing >>= _ = Nothing

The ‘Maybe’ type and its monad instance describe computations that can fail.

For example, consider the following three (contrived) functions:

positive :: Int -> Maybe Int

positive x = if x > 0 then Just x else Nothing

divisibleByThree :: Int -> Maybe Int
divisibleByThree x = if x ‘mod‘ 3 == @ then Just x else Nothing

divisibleByFive :: Int -> Maybe Int

divisibleByFive x = if x ‘mod‘ 5 == 0 then Just x else Nothing

We can use these functions to validate a number as being positive, divisible by
three, and divisible by five by sequencing them together using the monad in-

stance:

validate :: Int -> Maybe Int
validate x =
positive x >>= \foo ->
divisibleByThree foo >>= \bar ->
divisibleByFive bar >>= \baz ->

return baz

44

Notice how we bind the result of any particular combination to a name; the result
of applying ‘positive’ to an integer is bound to the name ‘foo’, which is then used
as input to the function ‘divisibleByThree’, and so on. The function returns the
wrapped integer if it is positive and divisible by both three and five, and ‘Nothing’

if any of the validations fail, demonstrated as follows:

> validate 0
Nothing
> validate 3
Nothing
> validate 5
Nothing
> validate 15
Just 15

Monads have a special place in Haskell, and are used to implement 1/O, error-
handling, concurrency, and more. Due to their special stature, Haskell includes
a custom syntax for writing monadic functions, called do-notation. We can write

the ‘validate’ function like so:

validate :: Int -> Maybe Int
validate x = do
foo <- positive x
bar <- divisibleByThree foo
baz <- divisibleByFive bar

return baz

In a so-called do-block, monadic binds are denoted by an arrow rather than the
usual equals sign. The resulting program has a familiar-looking imperative style,

proceeding sequentially from top to bottom.

45

Although we won’t dwell on this point in much detail, monads can also be stack-
ed together using monad transformers. A monad transformer stack is just a
monad with multiple ‘layers’, where each layer can be accessed by using one
or more ‘lift’ functions. The ‘Maybe’ type can be stacked over the ‘IO’ type, as
in the following example (where the validation functions have been adjusted to

work with the new type):

validateAndPrint :: Int -> MaybeT IO Int
validateAndPrint x = do

foo <- positiveT x

bar <- divisibleByThreeT foo

baz <- divisibleByFiveT bar

lift (print baz)

return baz

Here we use the ‘Maybe’ monad to do validation and the ‘IO’ monad to print the
value of ‘baz’ to stdout. The interesting thing is that if ‘baz’ ever fails to validate,

the result won’t be printed.

Monad transformers are used throughout this dissertation but a deep under-
standing of them is not required. They are essentially a way to build composite

monads from primitive parts, and that abstract intuition is sufficient.

Along with its Functor and Applicative instances, the discrete probability distri-

bution type from Section 2.4.1 is also a monad:

instance Monad Distribution where
return x = Distribution [(x, 1)]
Distribution xs >>= f = normalize
(Distribution [
&, p*a
I (x, p) <- xs

46

, (v, @) <- values (f x)
D

where the ‘normalize’ and ‘values’ functions are defined as follows:

normalize :: Distribution a -> Distribution a
normalize d = Distribution (fmap (second (/ total)) vals)
where vals = values d
total foldr ((+) . snd) 0 vals

values :: Distribution a -> [(a, Rational)]

values (Distribution vs) = vs

The ‘normalize’ function ensures that a distribution’s probability mass sums to
one, while the ‘values’ function simply extracts the distribution’s support and
mass structure. Note also that the ‘normalize’ function also makes use of the
‘second’ helper function, which can be imported via the ‘Control. Arrow’ module

included in the Haskell standard library.

The two monadic functions ‘return’ and ‘bind’ have familiar interpretations in
the context of probability theory. ‘return’ takes a value x of type a and returns
a Dirac distribution over a, with the entirety of its probability concentrated at
x. ‘bind’ on the other hand is a marginalizing operator; it takes a probability
distribution P over type a and a function that uses a value of type a to construct a
distribution over type b, and produces a distribution over type b by marginalizing

P out of the joint distribution.

The ‘bind’ operator that implements marginalization is exactly what we can
use to compose distributions together in a context-sensitive manner. Consider
the following pairs of discrete distributions, where the second takes a parameter

that describes its support:

47

> let num = Distribution [(10, 1 / 3), (11, 1 / 3), (12, 1 / 3)]
> let discrete n = Distribution [
(n-1,1/5
, (n, 2/5)
,(n+1,2/5)
]

We can compose ‘num’ and ‘discrete’ together by using ‘num’ as the input pa-

rameter to ‘discrete’, producing the following compound distribution:

> let compound = num >>= discrete
> compound
Distribution [
@, 1%15), (10, 2 % 15)

, (11, 2 % 15), (10, 1 % 15)

, (11, 2 % 15), (12, 2 % 15)

, (11, 1 % 15), (12, 2 % 15)

, (13, 2 % 15)

The ‘num’ distribution has been marginalized into ‘discrete’ by using the monadic
bind operator. Both the support and its density structure of ‘discrete’ have been
transformed; the support ranges from 9 to 13, and the associated probabilities
are now exclusively either 1/15 or 2/15. It’s also worth striking home the point

that the compound distribution could be written using do-notation as follows:

compound :: Distribution Int
compound = do
n <- num

discrete n

48

The ‘discrete’ distribution takes an integer as a parameter, but ‘num’ is a distribu-
tion over integers. The monadic bind allows us to deal with the ‘num’ distribution
as a single integer and feed it into ‘discrete’, statically ensuring that the result is

another distribution.

We aren’t limited to just sequencing a single distribution together; since the ‘dis-
crete’ distribution takes an integer as a parameter and is itself a distribution over
integers, we can use it to feed integers into itself by ‘looping’ some number of

times:

compounder :: Distribution Int

compounder = num >>= discrete >>= discrete >>= discrete >>= discrete

We of course get an appropriately-weighted distribution as in return:

> compounder

Distribution [(6,1 % 1875), ...]

The bind operator can be used to sequence any arbitrary directed graph of distri-
butions together. What’s more the distribution resulting from a series of monadic
binds is familiar to Bayesian statisticians as the predictive distribution. If p(6) cor-
responds to a prior distribution and p(z | #) a likelihood, then binding p(#) and
p(z | 0) together in that order yields the (prior) predictive distribution p(z). We’ll

make much more use of this fact later in the dissertation.

To tie up loose ends: recall that in Section 2.4.3 we deferred implementing the
applicative instance for ‘Distribution’. Since every monad is an applicative func-
tor by construction, it is often easier to implement a Monad instance first, and
then implement the Applicative instance in terms of that. We can implement the

Applicative instance as follows:

49

instance Applicative Distribution where
pure = return

(<*>) = ap

Here, ‘ap’ is a function from the ‘Control.Monad’ module that all monads get
for free — that is, it can always be implemented in terms of the monadic ‘return’
and ‘bind’ functions, and so a default implementation of it always exists given an
existing Monad instance. It turns out to be equal to the applicative ‘apply’ func-
tion, and similarly the monadic ‘return’ function is equivalent to the applicative
‘pure’. So we can always hijack the functionality provided by a Monad instance
in order to implement the corresponding Applicative instance, though in select
cases it can be desirable (in terms of computational efficiency) to implement the
Applicative instance directly in terms of non-monadic functions. An Applica-
tive instance derived in this way is guaranteed to be law-abiding so long as the
Monad instance obeys the monad laws, so we don’t usually need to prove the

applicative laws explicitly.

2.5 Conclusion

2.5.1 An Embedded Language for Probability Distributions

The discrete probability distribution type is a particular representation for prob-
ability distributions. It’s fairly limited, but can accurately denote distributions
over arbitrary countable supports. The distribution is represented by an explicit
enumeration of both the support and associated probability mass at any point. It

is a particular ‘object representation’ for probability distributions.

The discrete distribution type is also an instance of the Functor typeclass, mean-

ing that we can use ‘fmap’ to transform the support of any distribution according

50

to some pointwise mapping function and be statically guaranteed to get a valid
probability distribution in return. What’s more, we are also statically guaranteed
that the transformed distribution will have a structurally similar density struc-

ture to that of the original distribution.

The Applicative instance allows us to apply context-free effects to our distribu-
tion type, letting us (for example) combine distributions together using abstract
addition, subtraction, and multiplication. That is, we can use convolution and its
friends in order to produce new distributions from old ones: again having static

guarantees that whatever emerges must be a valid probability distribution.

Finally, the monad instance gives us the powerful ability to apply context-sen-
sitive effects to our distribution type. We can glue arbitrary directed graphs of
distributions together via an appropriate marginalizing semantics, receiving a
valid predictive distribution in return. The monad instance also allows us to write
simple imperative programs involving distributions using do-notation, a special
syntax that eliminates the line noise of working with the monadic bind operator

>=.

These elements — a specific kind of data structure and facilities for transform-
ing and combining them — constitute a limited embedded DSL for working with
discrete probability distributions in Haskell. Were this implementation to be
packaged up in a library, users could fruitfully manipulate, transform, and com-
pose distributions with only a limited knowledge of the Haskell language more

broadly.

The construction implemented here is usually distinguished as a shallow embed-
ding, in that the DSL is implemented directly in terms of its semantics. This is in
contract to a deeply embedded DSL in which language constructs are represented
by abstract syntax (similar to in a standalone compiler). While typically lacking
the same expressive power as deeply-embedded DSLs, shallow embeddings are

more than suitable enough for many applications.

51

The EDSL in this chapter was explored in detail by Erwig and Kollmansberger
[2006], who used the Monty Hall problem (amongst other examples) to illustrate
its use. That example — particularly concise and beautiful when implemented in

an embedded monadic language like this — is expanded on below.

First, the initial distribution over doors. Each door is equally likely to be chosen;
one door contains the prize, while the others traditionally contain goats. We can

encode this over a boolean type, where ‘True’ indicates the winning door:

doors :: Distribution Bool
doors = Distribution [
(False, 1 / 3)
, (False, 1 / 3)
, (True, 1/ 3)
1

Now in a program we can represent an initial choice by (monadically) binding
‘doors’ to a variable. We also need to implement a function for switching, and

this is straightforward:

switch :: Bool -> Distribution Bool

switch True return False

switch False = return True

Applying ‘switch’ to a bound choice returns the predictive distribution over the

opposite choice. The entire program looks like this:

montyHall :: Distribution Bool
montyHall = do
choice <- doors

switch choice

52

It captures the procedural structure of the Monty Hall problem: first we make
a choice from the distribution of doors, and then we switch our choice. The

resulting distribution has the expected structure.

> montyHall
Distribution [(True, 2 % 3), (False, 1 % 3)]

If you’re paying attention however, it should be clear that we don’t need ‘switch’

to return a distribution over booleans. After all, switching is a deterministic

choice:
switch :: Bool -> Bool
switch True = False
switch False = True

The functorial structure makes it clear that we can just calculate the appropriate

distribution by transforming the support by this non-effectful ‘switch’ function:

alternateMontyHall :: Distribution Bool
alternateMontyHall = fmap switch doors

> alternateMontyHall
Distribution [(True, 2 % 3), (False, 1 % 3)]

Using a monadic functional language for dealing with probability distributions
lets insights like these fall out naturally; on the other hand, it’s more difficult to
realize that the Monty Hall problem corresponds to a simple transformation of

support when dealing purely with maths, or untyped imperative code.

In the next chapter we’ll further explore the monadic structure of probability
distributions, as well as produce two shallow EDSLs for working with other con-

crete representations for them.

53

2.5.2 Notes

The value of embedding DSLs in Haskell has been notably touched on by Gill
[2014] and Loh [2012]. Each author has additionally made important technical
contributions to the area, such as the use of type-safe observable sharing [Gill,
2009] and abstract syntax graphs for deeply-embedded DSLs [Oliveira and Loh,

2013].

54

Chapter 3

Representing Probability

Distributions

Statistical models are monadic

programs.

Tom Nielsen

3.1 Abstract and Contributions

This chapter explores the structure of probability distributions under the Giry
monad, the canonical probability monad that operates on the level of probability

measures.

From categorical and measure-theoretic foundations, we build up an embedded
language via a continuation-based implementation of the Giry monad. Proba-

bility measures are represented as programs for performing integration, and we

55

demonstrate that the algebraic structure afforded to them via their functor, ap-
plicative, and monad instances allow probabilistic concepts like image measure,
product measure, and marginalization to be expressed naturally. The embed-
ded language is demonstrated to be flexible as to the probability distributions it
can represent, but exponential complexity in its fundamental operations makes

it impractical outside of basic examples.

The primary contributions of this chapter are:

« Novel probabilistic interpretations of the Giry monad’s algebraic struc-
ture. Most significantly, we characterize image measure by functorial
structure and product measure by applicative structure. The functorial
structure is demonstrated to be useful for transforming a measure’s sup-
port while preserving its density structure, and the applicative/product
measure structure is demonstrated to be useful for encoding independence
between measurable functions, allowing us to express familiar constructs

such as measure convolution.

« A novel characterization of the Giry monad as a restricted continua-
tion monad. We implement a shallowly-embedded DSL for integration
by using a dual interpretation for probability measures, encoding them
as self-contained integration procedures that one can ‘query’ by integrat-
ing measurable functions against. We note that this language is struc-
turally equivalent to the ‘expectation monad’ of Ramsey and Pfeffer [2002]
since both are continuation-based encodings of the Giry monad. We de-
velop a number of queries — notably measure convolution and recovery
of moment/cumulant-generating and cumulative distribution functions

— over measures defined over varying supports.

56

3.2 Motivation

The previous chapter built up a simple probability monad by representing a prob-
ability distribution as an explicit enumeration of its support and density struc-
ture. The functor, applicative, and monad instances of the discrete distribution
type are useful for illustrating toy examples like the Monty Hall problem, but

that representation is otherwise limited for obvious reasons.

The ‘canonical’ probability monad is the so-called Giry monad [Lawvere, 1962,
Giry, 1981] which operates on the level of probability measures — themselves
canonical representations of probability distributions. Measure theory is used
to define and develop formal probability and is used almost exclusively in the-
oretical work where rigour is required. One typically proves some result about
probability distributions using canonical measure-theoretic constructs, and then
extends it to other representations as needed. A probability monad based on
measures similarly establishes a canonical probabilistic semantics that can then
be extended to other probability monads as required — the discrete probability

monad type introduced in Chapter 2, for example.
The measure characterization of a probability distribution is chosen in lieu of
things like probability density and mass functions because:

« a probability distribution represented by a probability measure is guaran-

teed to be well-defined for the measurable space under consideration,

« measures can be defined over abstract spaces in which alternate represen-
tations — such as probability mass or density functions, or even cumulative

distribution functions — may not necessarily exist, and

« measures treat probability distributions on abstract spaces in a unified

fashion, using a single language.

57

The cost of measure theory, ‘that most arid of subjects when done for its own
sake’ [Williams, 1991], is its relative impenetrableness. Measures can be hard
to think about because one must typically be inundated in some excruciatingly

technical detail when introduced to them.

At least on a semantic level, though, measures seem to make sense when it comes
to implementing a basis representation for a monadic probabilistic programming
language. A language based on measures should be ‘complete’ in some sense, in
that the representation must by construction be capable of denoting any valid

probability distribution.

In this chapter we’ll construct such an embedded monadic language by inter-

preting the theory and translating it into an implementation of the Giry monad.

3.3 Theoretical Background

It is useful to have a basic categorical language on hand for discussing the notions
of functor, monad, and so on and ascribing rigorous probabilistic interpretations
to them. In this section, we’ll derive the Giry monad from first principles —
from its categorical and measure-theoretic foundations — in order to establish
this language and lay some theoretical groundwork. Some standard references
for background material around the category theory, measure theory, functional
analysis, and integration theory presented here are Mac Lane [1971], Awodey

[2010], Aliprantis and Border [2006], and Pollard [2001].

3.3.1 Categorical Foundations

A category C'is a collection of objects and morphisms between them. If W, X,
Y, and Z are objectsin C, then f : W — X, ¢g: X — Y,andh :Y — Z

58

are examples of morphisms. These morphisms can be composed in the obvious
associative way, i.e.:

ho(gof)=(hog)of
and there exist identity morphisms that simply map objects to themselves. An
isomorphism is a morphism for which there exists an inverse — object X and
Y are isomorphic, denoted X = Y, if there exist morphisms 7 : X — Y and
j:Y = Xsuchthat joi =1y andioj = 1y.

A functor is a mapping between categories (equivalently, it’s a morphism in the
category of so-