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Abstract

This dissertation defends the thesis that novel and useful domain-specific lan-
guages for solving statistical problems can be embedded in statically-typed, purely-
functional programming languages.

It presents techniques for representing probability distributions in embedded
languages, deeply-embedding a type-safe probabilistic programming language
in a way that is amenable to inference, and embedding a language for building
composite Markov transition operators that can be used in MCMC.
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Chapter 1

Thesis

The point is: what are you trying
to show? The point is: what is
your point?

Olin Shivers

Novel and useful domain-specific languages for solving problems in Bayesian
statistics can be embedded in statically-typed, purely-functional programming
languages.

This dissertation defends that thesis, developing an argument in support of it by
way of three chapters. Each chapter presents some conceptual issue or problem
in statistics and demonstrates how it can be solved by some feat of language en-
gineering; namely, embedding a limited domain-specific language for solving the
problem inside of a host language. The ideas in this dissertation are all imple-
mented using Haskell, probably the most popular and best-supported statically-
typed and purely-functional programming language.

This thesis is both inspired by and supports ongoing research in probabilistic pro-

11



gramming: the idea of using specialized programming languages, interpreters,
compilers, hardware, and other similar tools to do Bayesian statistics [Mans-
inghka, 2009]. In particular, this dissertation contributes primarily to research
in embedded probabilistic programming languages, which have the advantage
of being able to hijack many desirable features (parser, compiler infrastructure,
library and extension ecosystem, etc.) from their host language.

The primary contributions of this dissertation are:

• Novel probabilistic interpretations of the Giry monad’s algebraic struc-
ture. Most significantly, we characterize image measure by functorial
structure and product measure by applicative structure. The functorial
structure is demonstrated to be useful for transforming a measure’s sup-
port while preserving its density structure, and the applicative/product
measure structure is demonstrated to be useful for encoding independence
between measurable functions.

• A novel characterization of the Giry monad as a restricted continua-
tion monad. We implement a shallowly-embedded DSL for integration
by using a dual interpretation for probability measures, encoding them
as self-contained integration procedures that one can ‘query’ by integrat-
ing measurable functions against. We note that this language is struc-
turally equivalent to the ‘expectation monad’ of Ramsey and Pfeffer [2002]
since both are continuation-based encodings of the Giry monad. We de-
velop a number of queries — notably measure convolution and recovery
of moment/cumulant-generating and cumulative distribution functions
— over measures defined over varying supports.

• A novel technique for embedding a statically-typed probabilistic pro-
gramming language in a purely functional language. We use the free

monad of a probabilistic base functor in order to define our embedded lan-
guage, giving us the same syntax as the language based on the Giry or

12



sampling monads, but with considerably more flexibility when it comes to
interpretation.

• A novel characterization of execution traces as cofree comonads. We
demonstrate that probabilistic programs encoded using the free monad
have a dual representation as execution traces under the cofree comonad,
which allows us to ‘move about’ in trace space and perturb a model’s in-
ternal parameters. We then implement a novel comonadic Markov Chain
Monte Carlo (MCMC) algorithm that makes use of this characterization.

• A novel technique for statically encoding conditional independence of
terms in the embedded language. We use the free applicative functor in
order to capture applicative expressions in a structure-preserving way.

• A novel technique for building custom transition operators for use in
Markov Chain Monte Carlo. Markov transition operators can be denoted
by a particular instance of the state monad such that familiar monadic com-
binators can be used to build composite transition operators from a set of
base, ‘known-good’ primitives.

Each of the above techniques has been implemented in one or more Haskell li-
braries which are liberally licensed and available on Github.

The rest of this chapter describes how the dissertation is structured. Chapter
2 is a background chapter that takes pains to provide the minimum necessary
background required to understand the computer science concepts, Haskell ter-
minology, and programs introduced throughout the dissertation; it can likely be
used as a reference and flipped to when needed. Chapters 3, 4, and 5 present the
primary contributions.
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1.1 Representing Probability Distributions

Chapter 3 explores much of the existing ground and discusses some fundamen-
tals of representing probability distributions in typed functional languages. It
presents the monadic structure of probability distributions, developed originally
in mathematics by Lawvere [1962] and Giry [1981] and then discussed seminally
with respect to functional programming by Ramsey and Pfeffer [2002] before
being importantly extended on by Park et al. [2008] and Ścibior et al. [2015].

We develop the Giry monad from first principles, using it to characterize impor-
tant probabilistic semantics common to embedded monadic probabilistic pro-
gramming languages. We then implement the Giry monad using a restricted
continuation monad through which the thorny details of preserving measura-
bility can be abstracted away. This representation proves to be interesting and
accurately captures important probabilistic semantics, but its prohibitive com-
putational complexity and some issues around implementing integration limits
its use in practice.

1.2 Representing Structured Probabilistic Models

We start by describing the well-known sampling monad and then note that it
shares the same monadic structure as the Giry monad from Chapter 3. These
constructions, however, are each ‘lossy’ in some sense; interpreting a distribution
and producing some output destroys the internal structure of the distribution
being interpreted by collapsing it to a point.

Chapter 4 presents a novel way to keep the same lightweight syntax used in both
the measure and sampling function-based DSLs, but also preserve the model’s
internal structure. In particular, the structure-preserving concept of algebraic
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freeness is exploited to reify a distribution as a data structure that can be tra-
versed and analyzed to support almost arbitrary interpretation. The result is a
deeply-embedded language for workingwith structured probabilisticmodels that
are more amenable to inference. Numerous useful interpreters are described for
working with these models. Sharing the same monadic structure captured by
the free monad, each of the measure and sampling function-based languages can
almost trivially be re-used and grafted onto the structure-preserving embedded
language.

1.3 Declarative Markov Chains

In similar fashion to the previous chapters, Chapter 5 demonstrates that the
Markov transition operators used in MCMC have a simple monadic structure.
Additionally they can be combined in a way that preserves existing properties
that are important for MCMC — Markovness, stationarity, and reversibility.

These properties are used to implement transition operators as monadic state

transitions in a simple shallowly-embedded language for building composite tran-
sition operators. The language — implemented as a library called declarative [To-
bin, 2013a] — can be used to build transition operators for any ‘single-particle’
Markov chain.

The declarative language includes transition operators corresponding to the Met-
ropolis-Hastings, slice sampling [Neal, 2003], Hamiltonian Monte Carlo (HMC)
[Neal, 2011], Metropolis-adjusted Langevin Diffusion (MALA), and No U-Turn
Sampler (NUTS) [Hoffman and Gelman, 2011] algorithms. These can be fruitfully
assembled to design compound transition operators that balance exploratory
power with computational expense, for example by interleaving a large number
of cheap Metropolis transitions with the occasional computationally expensive,
gradient-based HMC transition. Examples are provided over a number of target
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functions.

1.4 Scope of Formality

The DSLs developed in support of the thesis make a number of guarantees about
the behaviour of programs written in them. What follows is a brief summary
of the scope of formality aimed at and achieved in the languages presented in
Chapters 3-5.

The embedded languages developed in this dissertation are in general constructed
around:

• a particular abstract data type or types,

• a characterization of structure of those types, by way of e.g. functors or
monads, and

• a number of evaluation or query functions.

The scope of formality is thus to demonstrate that the data type or types we
employ accurately capture some fundamental probabilistic construct, that the
categorical structure of the probabilistic construct is characterized accurately,
and that the corresponding evaluation or query functions are well-motivated
and correct.

Each chapter presents some statistical construct that is first formalized mathe-
matically, and then distilled into some concise data type and functions for eval-
uating values of it. We then use the categorical structure of the type to charac-
terize some corresponding probabilistic structure, the result of which is a set of
combinators for manipulating values of the type in a law-abiding and semantics-
preserving fashion. These constitute our embedded DSLs.
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The mathematical formalizations used are concrete to a degree of rigour that is
likely satisfactory to the academic or practicing statistician. When translating
to code, we either directly prove, or cite some existing proof, that any claimed
categorical structure holds as described and required. The embedded languages
presented here are thus demonstrated to be correct at the level of formality de-
scribed above. Other degrees of formality, whatever they might be, are deemed
out of scope.

Variouswell-motivated supplementary functions— e.g. probability density func-
tion implementations, primitive Markov transition functions, pure pseudoran-
dom number generators — are not treated with the same formality. The ratio-
nale is that even if there were an error in the implementation of any of these
accessories, it would not invalidate the correctness of the embedded languages
at the level of formality described above. We do however employ a variety of
common-sense and easily-verified sanity tests throughout the dissertation, in
order to both illustrate the languages and also provide additional assurance that
the implementations are correct.

1.5 Wrapping up

Chapter 6 concludes the dissertation by providing a unifying summary, with at-
tention to arguments made in support of the thesis. Appendix A includes code
for one of the constructions developed in Chapter 4, and Appendix B includes
code for the primitive transition operators described in Chapter 5.

Libraries and code developed in support of this thesis are summarized alphabet-
ically below, along with URLs to their respective Github repositories:

• deanie: An embedded probabilistic programming language.
http://github.com/jtobin/deanie
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• declarative: DIY Markov chains.
http://github.com/jtobin/declarative

• flat-mcmc: Painless general-purpose sampling.
http://github.com/jtobin/flat-mcmc

• hasty-hamiltonian: Speedy traversal through parameter space.
http://github.com/jtobin/hasty-hamiltonian

• hnuts: Automatic gradient-based sampling.
http://github.com/jtobin/hnuts

• lazy-langevin: Gradient-based diffusion.
http://github.com/jtobin/lazy-langevin

• mcmc-types: Common types for implementing MCMC algorithms.
https://github.com/jtobin/mcmc-types

• measurable: A shallowly-embedded DSL for basic measure wrangling.
http://github.com/jtobin/measurable

• mighty-metropolis: The Metropolis sampling algorithm.
http://github.com/jtobin/mighty-metropolis

• mwc-probability: Sampling function-based probability distributions.
http://github.com/jtobin/mwc-probability

• speedy-slice: Speedy slice sampling.
http://github.com/jtobin/speedy-slice
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Chapter 2

Language Engineering in Haskell

A monad is just a monoid in the
category of endofunctors, what’s
the problem?

Philip Wadler (attributed)

2.1 Abstract and Contributions

This chapter provides background on important concepts in typed functional
programming, as well as an introduction to Haskell and its syntax.

Domain-specific languages and typed functional programming are undoubtedly
esoteric topics amongst statisticians. This chapter focuses on the concepts of al-
gebraic data types, important typeclasses, and how to use these ideas to define
embedded domain specific languages (EDSLs) that can be used within a host lan-
guage like Haskell. Special attention is paid to the monad typeclass — a class
of data structures with particular characteristics that can be used to denote and
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enforce useful probabilistic semantics. Monads are demonstrated to be a useful
foundational choice for representing distributions in embedded languages, with
emphasis on the useful composition and guarantee of strong type safety they pro-
vide.

Along the way, we build up a toy shallowly-embedded domain specific language
for representing and manipulating discrete probability distributions.

2.2 Motivation

The term ‘probability distribution’ is in practice somewhat ambiguous. A proba-
bility distribution is an abstract concept that can be distinctly characterized by a
variety of concrete representations. Canonically probability and distributions are
typically defined in terms of measures, but random variables, probability density
functions, characteristic functions, cumulative distribution functions, etc. are
used to represent distributions, depending on the problem under consideration.

Probably the most common representation in applied work is the probability
density or mass function: a measurable function f from some support Ω to R
such that

∫
Ω
fdµ = 1 for an appropriate measure µ. This is a useful representa-

tion for many common statistical tasks, namely for calculating probabilities and
expectations by integrating over it.

When it comes to representing distributions on computers we’re typically inter-
ested in doing all sorts of things with them, and the density function represen-
tation can be unsatisfying for at least two reasons.

First, frequently one doesn’t actually wish to calculate probabilities and expec-
tations explicitly. Instead, another characterization — like sampling functions —
may be more useful, either for simulation or other approximate work.
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But second — and more importantly — it is not necessarily easy to encode the
laws of this representation in any consistent way. For example, one might wish
to ensure that given two density functions f and g, the two can be combined or
composed in some sense to form a function h that is also a valid density func-
tion for some distribution. It’s not clear how to enforce this for all valid density
functions one might want to consider.

In particular, composition of distributions is integral to applied Bayesian statis-
tics. Typically we are interested in forming some probabilistic model for some
phenomenon by combining distributions together in some hierarchical struc-
ture. Indeed, a hierarchical Bayesian model is nothing more than a collection of
probability distributions composed together in a particular, consistent manner.
To express general problems of interest to Bayesian statistics it is thus desirable
to have not only a well-defined representation for probability distributions, but
also a well-defined method for manipulating them or otherwise putting them
together.

To get around the first problem there is the ‘kitchen sink’ approach to representa-
tion, in which one represents a probability distribution by a unified bag or object
of individual characterizations: sampling functions, density functions, cumula-
tive density functions, and so on. This approach is effective for some applications
— note the R package distr [Ruckdeschel et al., 2006], for example— but it still suf-
fers from the problem of enforcing well-defined composition of distributions. An
object representation in the ‘object-oriented’ sense does not immediately expose
any opportunities for combining or composing general distributions together
such that they are guaranteed to obey certain desirable laws. Not only that, but
any definition of compositionmust be implemented individually for each charac-
terization, and there is typically no guarantee that the composition is consistent
across representations in any sense.

Sowhat is desirable is to go a step further— to encode probability distributions by
way of some consistent data structure (as in the kitchen sink approach, perhaps),
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but also define rigorous and exclusive ways by which they can be manipulated
and composed together in a well-defined way. The ideal case would be to specify
a general framework for encoding varied representations of probability distribu-
tions, such that any given representation is guaranteed to obey certain important
laws.

This chapter develops such a representation.

2.2.1 Domain Specific Languages and Haskell

The combination of data structure and facilities for working with it constitute
the basics of a domain-specific language (DSL) — a collection of object repre-
sentations, combinators for working with them, and functionality for interact-
ing with or querying them. This dissertation discusses building, manipulating,
and composing distributions at the language level, such that probability distri-
butions (and, later, related concepts) are treated as fundamental ‘first-class citi-
zens’ with supporting frameworks built around them. It demonstrates that such
languages can be particularly useful for formulating and solving problems in
Bayesian statistics.

DSLs are useful tools in that they grant a user significant power to express prob-
lems within some domain, while also significantly limiting the expressiveness
of the language precisely to that domain. This limited scope makes the language
easier to use, implement, and interpret: a domain-specific language such as SQL¹,
for example, has no need to implement general facilities for making exotic net-
work calls (or indeed, implementing a language for probability distributions). It
focuses entirely on the domain of building structured query expressions.

DSLs also tend to be declarative, in that the programmer typically specifies ‘what
something is’ rather than ‘how to do it’. Queries in SQL are declarative, for

¹A family of popular database querying languages.
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example:

SELECT columns FROM table WHERE predicate

The query describes exactly what is desired, rather than how the database’s in-
dexes should be resolved to extract the corresponding data. This declarative em-
phasis is part of what makes DSLs work; users of the language can express their
intents, without needing to provide the gory details of how they are achieved. A
well-designed DSL allows users to formulate and solve problems in their domain
at a relatively high level of abstraction.

DSLs have already proven themselves useful in Bayesian statistics in particular.
BUGS [Lunn et al., 2000], JAGS [Plummer, 2015a], and Stan [Stan, 2013] are three
popular limited languages for building Bayesian models and performing infer-
ence on them. The recent increased research effort in probabilistic programming
has also led to the development of various other experimental languages, includ-
ing Hakaru [Hakaru, 2014] and Venture [Mansinghka et al., 2014].

A DSL can be implemented on its own, with a standalone compiler and toolchain.
But it can also be implemented inside some other host language, a technique
called embedding. By using a host language to embed the DSL, one reaps a num-
ber of benefits, namely that the existing compiler, toolchain, and library ecosys-
tem of the host language can be used in tandem with the embedded language.
Implementing an industrial quality standalone compiler can be a demanding task,
so recycling an existing compiler infrastructure is often desirable. An embedded
DSL, or EDSL, typically has a lower startup cost than implementing a compiler
for a standalone language. There are downsides as well — error messages in
EDSLs must rely heavily on the host language, for example — but they are par-
ticularly useful for smaller, minimalist-style implementations.

Haskell [Marlow (editor), 2010] is a particularly suitable host language for EDSLs
[Gill, 2014]. It has a sophisticated and well-developed compiler infrastructure in
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the Glasgow Haskell Compiler, or GHC, and a wealth of general-purpose libraries
available in its ecosystem. There exist robust tools for: building, packaging, and
distributing libraries; benchmarking and profiling runtime execution; network
programming; parallel and concurrent programming, and so on.

Haskell is a purely-functional programming language. To tackle the last part
of that definition first: functional programming is a programming paradigm in
which the central computational element is the evaluation of functions or expres-
sions. This can be contrasted to imperative programming, in which the central
computational elements are statements that change a program’s internal state.
Common functional programming languages include Lisp, Erlang, and the ML
family of languages, while common imperative languages include C, C++, and
Java. Most languages contain at least limited support for both paradigms.

Imperative languages rely on mutation or destructive updating for control flow
and many calculations. For example, a simple ‘for’ loop consists of a single piece
of mutable data — a counter — that is repeatedlymutated to perform some overall
calculation. Most existing functional languages, such as Lisp and the ML family,
also permit (and make use of) destructive updates.

A function contains a side effect if it modifies some program state in addition to
returning some value. Side effects can be common in programswritten in C, Java,
Python, R, and so on, where global variables — variables that are in the global
lexical scope of a program — tend to find heavy use. For example, a common
idiom in statistical work is to use a global ‘number of accepts’ variable for keeping
track of proposals accepted while running anMCMC routine. Typically the same
function that accepts a proposed move in the chain also increments the counter,
performing a side effect.

A purely functional language is characterised by a lack of language support for
both ‘unmanaged’ mutation and side effects. In a purely functional language,
functions may only return a value, and all data is immutable. A pure function
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— like a typical function one deals with in maths — has the property that it will
always return the same value when given the same inputs. Effects and mutation
are still possible in purely-functional languages, but they must be managed in a
particular way. A program that performs effects must in some sense be explicit
about what effects it performs (we’ll see examples of this later in the chapter).

But most importantly for the topic at hand, Haskell supports a number of desir-
able language constructs for doing ‘language engineering’; the ability to write
higher-order functions, a strong system of algebraic data types, support for para-
metric polymorphism, and useful, generic typeclasses constitute a powerful set of
tools for building compilers or constructing EDSLs.

The following sections outline these techniques in some detail, providing a brief
introduction to concepts in programming languages, functional programming,
and type systems, in addition to an overview of Haskell syntax. For a rigor-
ous and comprehensive treatment of types and programming languages, see the
excellent and seminal Pierce [2002]. For an introduction to programming in
Haskell, Lipovac̆a [2011] is a popular, readable, and enjoyable text.

2.3 Algebraic Data Types

2.3.1 Abstract Terms and Types

A programming language is typically defined by its formal grammar. The gram-
mar specifies the terms (or expressions) of a language — the collection of legal
syntactic constructs that can be expressed in the language proper. Consider a
very simple language for adding integers, for example. It can be defined by the
following grammar, denoted in Backus-Naur Form, or BNF [Grune and Jacobs,
2008]:
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<addition> ::= lit <int>

| add <addition> <addition>

This grammar (where integers are taken to be primitive) is a specification of the
language— though it is not a total specification since it does not define semantics.
Terms in this language are either literals, represented by ‘lit <int>’, or the addition
of terms, represented by ‘add <addition> <addition>’. A valid program in this
language could be ‘add (lit 1) (lit 1)’, representing the addition of two literals, or
even just something like the trivial ‘lit 0’.

Like all nontrivial grammars, this one has a familiar recursive structure that is
defined in terms of itself. The structure of ‘addition’ terms is such that we can
write programs like:

add (add (lit 1) (add (lit 1) (lit 0)))

(add (lit 0) (add (lit 1) (lit 2)))

in which ‘add’ expressions can contain other ‘add’ subexpressions.

A type is a metavariable for tagging terms in a programming language. Types T
are typically assigned to terms t via a binary relation ‘:’, so that we can denote
‘term t has type T ’ by t : T . Types are important for the static analysis of pro-
gramming languages; by analyzing types, we can rule out certain pathological
programs without ever attempting to evaluate them [Pierce, 2002]. As an exam-
ple, consider adding some literal Boolean terms to the toy language for addition
from above:

<augmented> ::= lit <lit>

| add <augmented> <augmented>

<lit> ::= true
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| false

| <int>

In this language it is possible to write programs like ‘add (lit true) (lit 1)’ which
may not have any meaningful semantics. By annotating terms with types, we
can rule these programs out statically, i.e. without needing to actually evaluate
them. We can define a set of types:

<T> ::= Boolean

| Integer

as well as a set of typing relations:

lit true : Boolean lit false : Boolean lit <int> : Integer

t0 : Integer t1 : Integer
add t0 t1 : Integer

where the bottom expression reads “if the terms t0 and t1 both have type Integer,
then the term ‘add t0 t1’ also has type Integer”. Any expression for which a type
cannot be derived by these relations — for example ‘add t2 t3’ for t2 : Boolean
and t3 : Int — has no meaningful semantics in the language. An algorithm that
verifies a set of typing relations is called a type checker, and serves to rule out
invalid programs without needing to evaluate them (typically when the program
is compiled). A type checker will typically report a type error for an expression
that is not well-typed.

Types are regularly (if informally) used in mathematical specifications as well,
usually to denote the set that an element belongs to, or the sets that make up
the domain and range (or codomain) of a function. Consider a one-dimensional
Gaussian density f , for example; the statement ∀x ∈ R. f(x) ∈ R ascribes a
typing relation that can be interpreted as ‘for any x with type R, f(x) has type
R’, where the types denote the sets that the each term belongs to. Equivalently,
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we could write f : R → R to denote that f takes an argument having type R
and returns an value having the same type.

2.3.2 Terms and Types in Haskell

Haskell is a statically typed programming language: just like the previous ab-
stract treatment, every term in Haskell has a type, and these types are checked
statically — before any program is actually evaluated. To ascribe types to terms,
Haskell expressions are typically annotated like so:

add :: Int -> Int -> Int

add a b = a + b

The top line is a type signature, indicating that the ‘add’ function has two argu-
ments, each of type ‘Int’, and that it returns a value with type ‘Int’. Haskell has
a Hindley-Milner or Damas-Milner type system [Milner, 1978] that is capable of
inferring types from arbitrary expressions. As a result, type signatures like the
above are rarely required, but are considered good practice to add to top level
definitions. We can ask for the inferred type of arbitrary Haskell expressions
from within GHCi, the standard Haskell interpreter, using ‘:t’:

> :t ”hello”

”hello” :: String

An algebraic data type (ADT) is a type built from other types using the two logical
algebraic operations ‘and’ and ‘or’. ADTs are pervasive in Haskell, and prove to
be useful formodelling generic composite types. AnADT is declared by the ‘data’
keyword; the following ADT declaration defines a type for the toy ‘addition’
language from Section 2.3.1:
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data Addition =

Lit Int

| Add Addition Addition

Note that it reads almost exactly like the BNF for the grammar presented previ-
ously. This ADT is constructed using both a logical ‘or’ — denoted by the pipe
operator ‘|’ — as well as a several logical ‘and’ operations denoted by whitespace.
It can be read as ‘the Addition type is defined by either the data constructor Lit
and the type constructor Int or the data constructor Add and the type constructor
Addition and the type constructor Addition’. This ADT is also defined recursively,
just as was the case in the formal grammars from Section 2.3.1.

Due to their algebraic properties, types formed from logical ‘or’ operators are of-
ten called sum types, while types formed from logical ‘ands’ are known as product
types.

2.3.3 A Proto-Representation For Probability Distributions

As an intermission of sorts, we can demonstrate that we’re able to define prob-
ability distributions on values having sum or product types. In the most trivial
cases we can take a type like ‘Double’ or ‘Int’ and define a probability density or
mass function over its values respectively, but the structure of more general al-
gebraic types pose no difficulty either. Consider the following ‘Group’ sum type
corresponding to a collection of groups, as well as a function corresponding to a
categorical distribution over values with that type:

data Group = A | B | C

categorical :: Group -> Double

categorical A = 0.1
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categorical B = 0.7

categorical C = 0.2

The ‘categorical’ mass function takes values of type ‘Group’ and assigns to them a
probability, represented by the ‘Double’ numeric type that corresponds to double-
precision floating point numbers. For a product type, we can consider:

data R3 = R3 Double Double Double

standardGaussian3d :: R3 -> Double

standardGaussian3d (R3 x y z) = gauss x * gauss y * gauss z where

gauss a = 1 / sqrt (2 * pi) * exp (negate (a ^ 2) / 2)

Here ‘R3’ corresponds to R3, and ‘standardGaussian3d’ assigns a standard nor-
mal density to values with type ‘R3’. Product types correspond to Cartesian prod-
ucts of types, which have a natural mapping to values over n-dimensional spaces.

We can also define more complex distributions over general ADTs that consist
of both sums and products. Consider the following type that assigns probability
density over values in a union space:

data Union =

A R3

| B R3

density :: Union -> Double

density (A r3) = 0.9 * standardGaussian3d r3

density (B r3) = 0.1 * standardGaussian3d r3

Notice that the algebraic properties of ‘Union’ mean that ‘density’ transcribes
the laws of probability verbatim; for R3 ∈ R3 we have that P (A ∩ R3) =
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P (A)P (R3|A), P (B ∩ R3) = P (B)P (R3|B), and P (Union) = P (A) + P (B),
since the intersection of A and B is empty.

Again, these examples fall back on the method of representing distributions via
densities. We can ascribe distributions to values of various types using densities,
but we have not gone much further towards building a language for working
with them more generally.

2.4 Parametric Polymorphism and Typeclasses

All the algebraic data types we’ve seen thus far have been built out of interpreted
base types [Pierce, 2002]; primitive, concrete types like ‘Int’ or ‘Bool’ put together
as abstract sums and products. We can also define more general parameterized

types which make use of uninterpreted type variables.

For example, we could create the following ADT that ‘holds’ two other general
types denoted by type variables:

data Pair a b = Pair a b

Here the type variables a and b are used to denote arbitrary other types. Note
that they appear on either side of the ‘equals’ operator in the data declaration,
which can be read as ‘for every a and b the type Pair a b is defined by the data
constructor Pair, the type constructor a, and the type constructor b’.

The type constructor ‘Pair’ defines an infinite family of types ‘Pair a b’. For ex-
ample, the following values x and y have different types constructed by ‘Pair’:

> let x = Pair (1 :: Int) (”hello” :: String)

> :t x
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x :: Pair Int String

> let y = Pair x True

> :t y

y :: Pair (Pair Int String) Bool

The ‘Pair a b’ type is said to be polymorphic, and by virtue of having type parame-
ters a and b it is an example of parametric polymorphism. A type system featuring
parametric polymorphism is very useful to have in a statically-typed program-
ming language: it enables generic programming, in that a function written once
can work over many types. For example, consider the following function that
plucks the first element out of a ‘Pair’:

pluck :: Pair a b -> a

pluck (Pair x _) = x

The ‘pluck’ function can be used for any value having type ‘Pair a b’, no mat-
ter what a and b are. There is no need to write one ‘pluck’ function that works
for the ‘Pair Int Double’ type, another for the ‘Pair Bool String’ type, and so
on. Parametricity enables various ‘free theorems’ that must always hold for any
implementation of a given function [Wadler, 1989]. Consider again the type sig-
nature for ‘pluck’ on its own, for example:

pluck :: Pair a b -> a

The general nature of the polymorphic type constrains the possible legal imple-
mentations of the function so much so that it can only do a single thing: return
the first value of the ‘Pair’. There are no other legal implementations that will
pass a type checker.²

²This disregards so-called ‘bottom’ values whose details are unnecessary here.
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It is useful to be able to restrict the type parameters of ‘Pair a b’ in a function
like ‘pluck’ to belong only to certain collections of types, called typeclasses. By
restricting the allowable types of a or b, for example, we expand the number of
legal implementations of ‘pluck’, typically by quite a large amount.

A typeclass is a collection of types that must all implement some particular func-
tions. A simple example is the ‘Eq’ typeclass, which allows values of a type in
that class to be compared for equality:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

The above typeclass definition states that for any type a that is a member of the
‘Eq’ typeclass, values having that type can be compared for equality. Note that
this was not possible for values having type ‘Group’ defined in Section 2.3.3. If
we try to compare equality of the values ‘A’ and ‘B’ in GHCi, for example, we
receive the following error:

> A == B

No instance for (Eq Group) arising from a use of ‘==’

In the expression: A == B

We can redefine ‘Group’ and automatically derive an instance of the ‘Eq’ type-
class for it as follows:

data Group = A | B | C

deriving Eq

This lets us compare values for equality as one would expect:
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> A == B

False

There are many important standard typeclasses in Haskell, with ‘Eq’ just being
a single example. Other important typeclasses include ‘Ord’, for types of values
that have a well-defined ordering, or ‘Show’, for types of values that have some
sort of textual representation.

The following subsections describe three foundational typeclasses that we will
throughout the dissertation: the ‘Functor’, ‘Applicative’, and ‘Monad’ typeclasses.
We will derive and demonstrate some properties of these structures more for-
mally in Chapter 3, but here we just present a more gentle introduction.

2.4.1 The Functor Typeclass

The ‘Functor’ typeclass represents a class of types that can be ‘mapped over’
in some sense. Instances of ‘Functor’ (called functors) must implement a single
function — called ‘fmap’ — which is defined as follows:

class Functor f where

fmap :: (a -> b) -> f a -> f b

‘fmap’ is an example of a higher-order function. It has two arguments: a function
of type a→ b and a value of type fa. Intuitively, the functor f can be pictured as
a container of sorts that holds elements of type a. ‘fmap’ applies its first argument
— the function of type a → b — to the elements of the container, resulting in a
value of type fb. The ‘shape’ of the container is unchanged, but it now holds
elements of type b instead of a. Instances of the Functor typeclass must satisfy
the following two laws (the ‘functor laws’), which can’t be automatically verified
by the compiler:
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fmap id = id -- identity

fmap (g . h) = fmap g . fmap h -- homomorphism

As an example, consider one of the most fundamental data types in Haskell, the
list. It can be defined abstractly as

data List a =

Prepend a (List a)

| Empty

deriving (Eq, Show)

A list is a polymorphic type that is either empty or is the prepending of a value
of type a onto another list. Thus the following examples are lists of type ‘∀a List
a’, ‘List Int’, and ‘List Char’ respectively:

> let foo = Empty

> let bar = Prepend 1 Empty

> let baz = Prepend ’h’ (Prepend ’i’ (Prepend ’!’ Empty))

The lists are containers that each hold values of a certain type. We can define a
‘Functor’ instance for generic lists as follows:

instance Functor List where

fmap _ Empty = Empty

fmap f (Prepend x l) = Prepend (f x) (fmap f l)

Intuitively, ‘fmap’ applies the function ‘f’ to each element of the list. It does so
by applying ‘f’ directly to the head of the list and recursively calling itself on the
list’s tail.

Since the functor laws can’t be verified by the compiler, we can use equational

reasoning to verify them ourselves. For the above instance, for example, we can
establish that:
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fmap id Empty

= Empty -- functor instance

fmap id (Prepend x l)

= Prepend (id x) (fmap id l)

= Prepend x (fmap id l) -- identity function

= Prepend x l -- inductive hypothesis

so that ‘fmap id = id’, verifying the first functor law. To verify the homomorphism
law, we have:

fmap (f . g) Empty

= Empty

(fmap f . fmap g) (Prepend x l)

= fmap f (fmap g (Prepend x l))

= fmap f (Prepend (g x) (fmap g l)) -- functor instance

= Prepend (f (g x)) (fmap f (fmap g l)) -- functor instance

= Prepend ((f . g) x) ((fmap f . fmap g) l) -- defn. of composition

= Prepend ((f . g) x) (fmap (f . g) l) -- inductive hypothesis

= fmap (f . g) (Prepend x l) -- functor instance

so that ‘fmap f . fmap g = fmap (f . g)’, as required. We won’t verify any other
laws in this chapter, but make use of the equational reasoning technique in the
sequel.

The functor instance enables us to use ‘fmap’ to change the contents of a given
list without changing the overall structure of the list itself. We can transform the
‘bar’ and ‘baz’ examples from the previous block as follows:

> fmap (+ 1) bar

Prepend 2 Empty
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> let f a | a == ’h’ = 1 | a == ’i’ = 2 | otherwise = 3

> fmap f baz

Prepend 1 (Prepend 2 (Prepend 3 Empty))

In practice, lists are of such importance in Haskell that they have a special built-
in syntax denoted by square brackets, ‘[”like”, ”this”]’. Additionally, Haskell’s
built-in String type is defined in terms of lists of characters, such that we can
write the following in place of the previous definition for ‘bar’:

> let quux = ”hi!”

> fmap f quux

[1, 2, 3]

2.4.2 Another Proto-Representation

That a functor’s ‘contents’ can be changed while leaving its overall structure
invariant is a very useful property.

As an example closer to the topic at hand, consider the following container type
that can be used to represent a discrete probability distribution:

data Distribution a = Distribution [(a, Rational)]

deriving Show

The ‘Distribution a’ type is simply a wrapper around a list of pairs containing
a value of type a and a rational number. We can use it to implement arbi-
trary categorical distributions. One of the simplest examples is the following
Bernoulli(2/3) distribution:

> let bernoulli = Distribution [(0, 1 / 3), (1, 2 / 3)]
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The type of ‘bernoulli’ here is ‘Distribution Int’, indicating that it is a probability
distribution over the integers. The following typeclass instance demonstrates
that ‘Distribution’ is a functor:

instance Functor Distribution where

fmap f (Distribution vs) = Distribution (fmap g vs) where

g (v, p) = (f v, p)

We can exploit the fact that ‘Distribution’ is a functor in order to transform its
support while leaving its mass structure invariant. For example, we can trans-
form the support from {0, 1} to the Boolean domain {False, True}:

> let convert x | x == 0 = False | otherwise = True

> fmap convert bernoulli

Distribution [(False, 1 % 3), (True, 2 % 3)]

> :t fmap convert bernoulli

Distribution Bool

The invariance property doesn’t just hold for probability distributions of type
‘Distribution Int’: parametricity and the Functor instance ensure the free theo-
rem that it holds for any type a. That is, we can use ‘fmap’ to transform the sup-
port of any valid probability distribution represented by this type and be guar-
anteed that we receive a valid probability distribution in return — completely
independent of whatever that support may be.

The functor instance will ensure that the correct density structure is preserved
even under ‘collapsing’ transformations to the support. Consider the distribution

example = Distribution [(0, 1 / 3), (1, 1 / 3), (2, 1 / 3)]

for example, and then consider using ‘fmap’ to apply the following function to
it:
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collapse x = if x <= 1 then 1 else 2

Clearly ‘collapse’ will decrease the size of the support by one element. However
the corresponding mass structure is preserved as expected:

> fmap collapse example

Distribution [(1, 1 % 3), (1, 1 % 3), (2, 1 % 3)]

2.4.3 The Applicative Typeclass

Closely related to a functor is an applicative functor (or just applicative), which is
what instances of the ‘Applicative’ typeclass are called. The typeclass itself can
be defined as follows:

class Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

Instances of ‘Applicative’ implement two functions: ‘pure’, and the infix operator
‘(<*>)’, which we will alias as ‘apply’ in this dissertation. The ‘pure’ function
takes a value of type a and simply puts it in the applicative, yielding a value of
type fa. The ‘apply’ function is much like ‘fmap’ from the Functor typeclass;
it takes as arguments function from a → b itself wrapped in an applicative f ,
plus a value of type fa, and returns a value of type fb. Every applicative functor
is itself a functor by construction, as ‘fmap f u’ is equivalent to ‘pure f <*> u’
[McBride and Paterson, 2008]. Instances of the Applicative typeclass must satisfy
the following laws, called the ‘applicative laws’:

pure id <*> x = x -- identity

pure f <*> pure x = pure (f x) -- homomorphism
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f <*> pure x = pure (\g -> g x) <*> f -- interchange

pure (.) <*> f <*> g <*> x = f <*> (g <*> x) -- composition

To illustrate applicative functors, consider Haskell’s ‘Maybe’ data type, defined
as follows:

data Maybe a =

Just a

| Nothing

‘Maybe’ has the following Applicative instance:

instance Applicative Maybe where

pure x = Just x

Just f <*> Just x = Just (f x)

_ <*> _ = Nothing

We can use it to apply functions wrapped in ‘Just’ constructors to other values
wrapped in ‘Just’ constructors. The following demonstrates this using Haskell’s
built-in ‘succ’ function, which returns the successor of a provider value:

> let f = Just succ

> f <*> Just 0

Just 1

> f <*> Nothing

Nothing

Instances of Applicative also have a function ‘liftA2’ defined for them by default,
where ‘liftA2’ is a little like ‘apply’ but for functions with two arguments:

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c

liftA2 f a b = fmap f <*> a <*> b
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Applicative functors can be used to implement a different typeclass instance:
namely, the ‘Num’ typeclass, which provides the ring operations of addition,
subtraction, and multiplication. The minimal definition of ‘Num’ is as follows:

instance Num a where

(+) :: a -> a -> a

(-) :: a -> a -> a

(*) :: a -> a -> a

abs :: a -> a

signum :: a -> a

fromInteger :: Integer -> a

Any applicative functor over a type a, where a itself is an instance of ‘Num’ can
automatically be made an instance of ‘Num’, as follows:

instance (Num a, Applicative f) => Num (f a) where

(+) = liftA2 (+)

(-) = liftA2 (-)

(*) = liftA2 (*)

abs = fmap abs

signum = fmap signum

fromInteger = pure . fromInteger

Now, return to our example probability distribution type defined in Section 2.4.1.
It is an instance of ‘Applicative’, though we will delay providing its implemen-
tation until the next section. By virtue of being an applicative functor, the ‘Dis-
tribution’ type can automatically be made an instance of ‘Num’ whenever its
support is itself a numeric type.

With a ‘Num’ instance in play, we can ‘add’ any two such probability distribu-
tions together, like so:
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> let bernoulli = Distribution [(0, 1 / 3), (1, 2 / 3)]

> let discrete = Distribution [(0, 1 / 5), (1, 2 / 5), (2, 2 / 5)]

> let convolved = bernoulli + discrete

> convolved

Distribution [

(0, 1 % 15), (1, 2 % 15)

, (2, 2 % 15), (1, 2 % 15)

, (2, 4 % 15), (3, 4 % 15)

]

As we’ll see in Chapter 3, abstract addition in this context corresponds to a con-
volution of probability distributions. The resulting distribution’s support is ex-
panded beyond that of ‘bernoulli’ or ‘discrete’ to cover an additional point, 3, and
its mass structure is reweighted appropriately. The resulting distribution has the
majority of its mass (6/15) at the point 2.

Note that while ‘fmap’ always leaves a Functor’s structure invariant, ‘apply’ is
able to alter it. We used ‘fmap’ in Section 2.4.1 to change a distribution’s support
without touching its mass structure, but ‘apply’ can alter both the support and the
mass structure. This phenomenon is known as an effect [McBride and Paterson,
2008].

Like the case of the Functor instance, values of any probability distribution type
defined so as to implement an Applicative instance can be convolved with other
distributions of the same type for free. What’s more, abstract notions of subtrac-
tion and multiplication are also provided by the ‘Num’ typeclass, where the be-
haviour of these operators correspond to their equivalents on random variables.
For example, ifX ∼ f and Y ∼ g are random variables, thenX − Y ∼ f − g

and XY ∼ fg.

Like the corresponding case for ‘fmap’, this property is guaranteed to hold for
any probability distribution that is also an applicative functor; convolution (and
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friends) of well-defined probability distributions is guaranteed to return other
well-defined probability distributions.

2.4.4 The Monad Typeclass

Haskell is well-known for its ‘Monad’ typeclass, which proves to be notoriously
difficult for many newcomers to understand. Instances of ‘Monad’ (called mon-

ads) are in some sense ‘restricted’ applicative functors; every monad is an ap-
plicative functor, but the converse is not necessarily true. The typeclass is de-
fined as follows:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Monads must implement two functions: ‘return’, which functions identically to
Applicative’s ‘pure’, and the operator ≫=, called bind. Like the Functor and Ap-
plicative typeclasses, instances of Monad must satisfy the following monad laws:

return x >>= f = f x -- left-identity

m >>= return = m -- right-identity

(m >>= f) >>= g = m >>= \x -> (f x >>= g) -- associativity

The ‘bind’ operator is what distinguishes a monad from an applicative functor.
In the case of an applicative, ‘apply’ sequences effectful computations together
in a context-free manner. The monadic bind operator on the other hand permits
effectful computations to be combined in a context-sensitive manner, such that
the result of one effect can determine whether or not to apply another. The bind
operator gets its namesake as it ‘binds’ the result of an effectful or structure-
altering computation to a name that can be referred to later.
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The ‘Maybe’ type introduced in the previous section is also a monad, and it has
the following typeclass instance:

instance Monad Maybe where

return = Just

Just x >>= f = f x

Nothing >>= _ = Nothing

The ‘Maybe’ type and its monad instance describe computations that can fail.
For example, consider the following three (contrived) functions:

positive :: Int -> Maybe Int

positive x = if x > 0 then Just x else Nothing

divisibleByThree :: Int -> Maybe Int

divisibleByThree x = if x ‘mod‘ 3 == 0 then Just x else Nothing

divisibleByFive :: Int -> Maybe Int

divisibleByFive x = if x ‘mod‘ 5 == 0 then Just x else Nothing

We can use these functions to validate a number as being positive, divisible by
three, and divisible by five by sequencing them together using the monad in-
stance:

validate :: Int -> Maybe Int

validate x =

positive x >>= \foo ->

divisibleByThree foo >>= \bar ->

divisibleByFive bar >>= \baz ->

return baz
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Notice howwe bind the result of any particular combination to a name; the result
of applying ‘positive’ to an integer is bound to the name ‘foo’, which is then used
as input to the function ‘divisibleByThree’, and so on. The function returns the
wrapped integer if it is positive and divisible by both three and five, and ‘Nothing’
if any of the validations fail, demonstrated as follows:

> validate 0

Nothing

> validate 3

Nothing

> validate 5

Nothing

> validate 15

Just 15

Monads have a special place in Haskell, and are used to implement I/O, error-
handling, concurrency, and more. Due to their special stature, Haskell includes
a custom syntax for writing monadic functions, called do-notation. We can write
the ‘validate’ function like so:

validate :: Int -> Maybe Int

validate x = do

foo <- positive x

bar <- divisibleByThree foo

baz <- divisibleByFive bar

return baz

In a so-called do-block, monadic binds are denoted by an arrow rather than the
usual equals sign. The resulting program has a familiar-looking imperative style,
proceeding sequentially from top to bottom.
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Although we won’t dwell on this point in much detail, monads can also be stack-
ed together using monad transformers. A monad transformer stack is just a
monad with multiple ‘layers’, where each layer can be accessed by using one
or more ‘lift’ functions. The ‘Maybe’ type can be stacked over the ‘IO’ type, as
in the following example (where the validation functions have been adjusted to
work with the new type):

validateAndPrint :: Int -> MaybeT IO Int

validateAndPrint x = do

foo <- positiveT x

bar <- divisibleByThreeT foo

baz <- divisibleByFiveT bar

lift (print baz)

return baz

Here we use the ‘Maybe’ monad to do validation and the ‘IO’ monad to print the
value of ‘baz’ to stdout. The interesting thing is that if ‘baz’ ever fails to validate,
the result won’t be printed.

Monad transformers are used throughout this dissertation but a deep under-
standing of them is not required. They are essentially a way to build composite
monads from primitive parts, and that abstract intuition is sufficient.

Along with its Functor and Applicative instances, the discrete probability distri-
bution type from Section 2.4.1 is also a monad:

instance Monad Distribution where

return x = Distribution [(x, 1)]

Distribution xs >>= f = normalize

(Distribution [

(y, p * q)

| (x, p) <- xs
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, (y, q) <- values (f x)

])

where the ‘normalize’ and ‘values’ functions are defined as follows:

normalize :: Distribution a -> Distribution a

normalize d = Distribution (fmap (second (/ total)) vals)

where vals = values d

total = foldr ((+) . snd) 0 vals

values :: Distribution a -> [(a, Rational)]

values (Distribution vs) = vs

The ‘normalize’ function ensures that a distribution’s probability mass sums to
one, while the ‘values’ function simply extracts the distribution’s support and
mass structure. Note also that the ‘normalize’ function also makes use of the
‘second’ helper function, which can be imported via the ‘Control.Arrow’ module
included in the Haskell standard library.

The two monadic functions ‘return’ and ‘bind’ have familiar interpretations in
the context of probability theory. ‘return’ takes a value x of type a and returns
a Dirac distribution over a, with the entirety of its probability concentrated at
x. ‘bind’ on the other hand is a marginalizing operator; it takes a probability
distributionP over type a and a function that uses a value of type a to construct a
distribution over type b, and produces a distribution over type b bymarginalizing
P out of the joint distribution.

The ‘bind’ operator that implements marginalization is exactly what we can
use to compose distributions together in a context-sensitive manner. Consider
the following pairs of discrete distributions, where the second takes a parameter
that describes its support:
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> let num = Distribution [(10, 1 / 3), (11, 1 / 3), (12, 1 / 3)]

> let discrete n = Distribution [

(n - 1, 1 / 5)

, (n, 2 / 5)

, (n + 1, 2 / 5)

]

We can compose ‘num’ and ‘discrete’ together by using ‘num’ as the input pa-
rameter to ‘discrete’, producing the following compound distribution:

> let compound = num >>= discrete

> compound

Distribution [

(9, 1 % 15), (10, 2 % 15)

, (11, 2 % 15), (10, 1 % 15)

, (11, 2 % 15), (12, 2 % 15)

, (11, 1 % 15), (12, 2 % 15)

, (13, 2 % 15)

]

The ‘num’ distribution has beenmarginalized into ‘discrete’ by using themonadic
bind operator. Both the support and its density structure of ‘discrete’ have been
transformed; the support ranges from 9 to 13, and the associated probabilities
are now exclusively either 1/15 or 2/15. It’s also worth striking home the point
that the compound distribution could be written using do-notation as follows:

compound :: Distribution Int

compound = do

n <- num

discrete n
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The ‘discrete’ distribution takes an integer as a parameter, but ‘num’ is a distribu-
tion over integers. Themonadic bind allows us to deal with the ‘num’ distribution
as a single integer and feed it into ‘discrete’, statically ensuring that the result is
another distribution.

We aren’t limited to just sequencing a single distribution together; since the ‘dis-
crete’ distribution takes an integer as a parameter and is itself a distribution over
integers, we can use it to feed integers into itself by ‘looping’ some number of
times:

compounder :: Distribution Int

compounder = num >>= discrete >>= discrete >>= discrete >>= discrete

We of course get an appropriately-weighted distribution as in return:

> compounder

Distribution [(6,1 % 1875), ... ]

The bind operator can be used to sequence any arbitrary directed graph of distri-
butions together. What’s more the distribution resulting from a series of monadic
binds is familiar to Bayesian statisticians as the predictive distribution. If p(θ) cor-
responds to a prior distribution and p(x | θ) a likelihood, then binding p(θ) and
p(x | θ) together in that order yields the (prior) predictive distribution p(x). We’ll
make much more use of this fact later in the dissertation.

To tie up loose ends: recall that in Section 2.4.3 we deferred implementing the
applicative instance for ‘Distribution’. Since every monad is an applicative func-
tor by construction, it is often easier to implement a Monad instance first, and
then implement the Applicative instance in terms of that. We can implement the
Applicative instance as follows:
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instance Applicative Distribution where

pure = return

(<*>) = ap

Here, ‘ap’ is a function from the ‘Control.Monad’ module that all monads get
for free — that is, it can always be implemented in terms of the monadic ‘return’
and ‘bind’ functions, and so a default implementation of it always exists given an
existing Monad instance. It turns out to be equal to the applicative ‘apply’ func-
tion, and similarly the monadic ‘return’ function is equivalent to the applicative
‘pure’. So we can always hijack the functionality provided by a Monad instance
in order to implement the corresponding Applicative instance, though in select
cases it can be desirable (in terms of computational efficiency) to implement the
Applicative instance directly in terms of non-monadic functions. An Applica-
tive instance derived in this way is guaranteed to be law-abiding so long as the
Monad instance obeys the monad laws, so we don’t usually need to prove the
applicative laws explicitly.

2.5 Conclusion

2.5.1 An Embedded Language for Probability Distributions

The discrete probability distribution type is a particular representation for prob-
ability distributions. It’s fairly limited, but can accurately denote distributions
over arbitrary countable supports. The distribution is represented by an explicit
enumeration of both the support and associated probability mass at any point. It
is a particular ‘object representation’ for probability distributions.

The discrete distribution type is also an instance of the Functor typeclass, mean-
ing that we can use ‘fmap’ to transform the support of any distribution according
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to some pointwise mapping function and be statically guaranteed to get a valid
probability distribution in return. What’s more, we are also statically guaranteed
that the transformed distribution will have a structurally similar density struc-
ture to that of the original distribution.

The Applicative instance allows us to apply context-free effects to our distribu-
tion type, letting us (for example) combine distributions together using abstract
addition, subtraction, and multiplication. That is, we can use convolution and its
friends in order to produce new distributions from old ones: again having static
guarantees that whatever emerges must be a valid probability distribution.

Finally, the monad instance gives us the powerful ability to apply context-sen-
sitive effects to our distribution type. We can glue arbitrary directed graphs of
distributions together via an appropriate marginalizing semantics, receiving a
valid predictive distribution in return. The monad instance also allows us to write
simple imperative programs involving distributions using do-notation, a special
syntax that eliminates the line noise of working with the monadic bind operator
≫=.

These elements — a specific kind of data structure and facilities for transform-
ing and combining them — constitute a limited embedded DSL for working with
discrete probability distributions in Haskell. Were this implementation to be
packaged up in a library, users could fruitfully manipulate, transform, and com-
pose distributions with only a limited knowledge of the Haskell language more
broadly.

The construction implemented here is usually distinguished as a shallow embed-
ding, in that the DSL is implemented directly in terms of its semantics. This is in
contract to a deeply embedded DSL in which language constructs are represented
by abstract syntax (similar to in a standalone compiler). While typically lacking
the same expressive power as deeply-embedded DSLs, shallow embeddings are
more than suitable enough for many applications.
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The EDSL in this chapter was explored in detail by Erwig and Kollmansberger
[2006], who used the Monty Hall problem (amongst other examples) to illustrate
its use. That example — particularly concise and beautiful when implemented in
an embedded monadic language like this — is expanded on below.

First, the initial distribution over doors. Each door is equally likely to be chosen;
one door contains the prize, while the others traditionally contain goats. We can
encode this over a boolean type, where ‘True’ indicates the winning door:

doors :: Distribution Bool

doors = Distribution [

(False, 1 / 3)

, (False, 1 / 3)

, (True, 1 / 3)

]

Now in a program we can represent an initial choice by (monadically) binding
‘doors’ to a variable. We also need to implement a function for switching, and
this is straightforward:

switch :: Bool -> Distribution Bool

switch True = return False

switch False = return True

Applying ‘switch’ to a bound choice returns the predictive distribution over the
opposite choice. The entire program looks like this:

montyHall :: Distribution Bool

montyHall = do

choice <- doors

switch choice
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It captures the procedural structure of the Monty Hall problem: first we make
a choice from the distribution of doors, and then we switch our choice. The
resulting distribution has the expected structure.

> montyHall

Distribution [(True, 2 % 3), (False, 1 % 3)]

If you’re paying attention however, it should be clear that we don’t need ‘switch’
to return a distribution over booleans. After all, switching is a deterministic
choice:

switch :: Bool -> Bool

switch True = False

switch False = True

The functorial structure makes it clear that we can just calculate the appropriate
distribution by transforming the support by this non-effectful ‘switch’ function:

alternateMontyHall :: Distribution Bool

alternateMontyHall = fmap switch doors

> alternateMontyHall

Distribution [(True, 2 % 3), (False, 1 % 3)]

Using a monadic functional language for dealing with probability distributions
lets insights like these fall out naturally; on the other hand, it’s more difficult to
realize that the Monty Hall problem corresponds to a simple transformation of
support when dealing purely with maths, or untyped imperative code.

In the next chapter we’ll further explore the monadic structure of probability
distributions, as well as produce two shallow EDSLs for working with other con-
crete representations for them.
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2.5.2 Notes

The value of embedding DSLs in Haskell has been notably touched on by Gill
[2014] and Löh [2012]. Each author has additionally made important technical
contributions to the area, such as the use of type-safe observable sharing [Gill,
2009] and abstract syntax graphs for deeply-embedded DSLs [Oliveira and Löh,
2013].
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Chapter 3

Representing Probability
Distributions

Statistical models are monadic
programs.

Tom Nielsen

3.1 Abstract and Contributions

This chapter explores the structure of probability distributions under the Giry

monad, the canonical probability monad that operates on the level of probability
measures.

From categorical and measure-theoretic foundations, we build up an embedded
language via a continuation-based implementation of the Giry monad. Proba-
bility measures are represented as programs for performing integration, and we
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demonstrate that the algebraic structure afforded to them via their functor, ap-
plicative, and monad instances allow probabilistic concepts like image measure,
product measure, and marginalization to be expressed naturally. The embed-
ded language is demonstrated to be flexible as to the probability distributions it
can represent, but exponential complexity in its fundamental operations makes
it impractical outside of basic examples.

The primary contributions of this chapter are:

• Novel probabilistic interpretations of the Giry monad’s algebraic struc-
ture. Most significantly, we characterize image measure by functorial
structure and product measure by applicative structure. The functorial
structure is demonstrated to be useful for transforming a measure’s sup-
port while preserving its density structure, and the applicative/product
measure structure is demonstrated to be useful for encoding independence
between measurable functions, allowing us to express familiar constructs
such as measure convolution.

• A novel characterization of the Giry monad as a restricted continua-
tion monad. We implement a shallowly-embedded DSL for integration
by using a dual interpretation for probability measures, encoding them
as self-contained integration procedures that one can ‘query’ by integrat-
ing measurable functions against. We note that this language is struc-
turally equivalent to the ‘expectation monad’ of Ramsey and Pfeffer [2002]
since both are continuation-based encodings of the Giry monad. We de-
velop a number of queries — notably measure convolution and recovery
of moment/cumulant-generating and cumulative distribution functions
— over measures defined over varying supports.
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3.2 Motivation

Theprevious chapter built up a simple probability monad by representing a prob-
ability distribution as an explicit enumeration of its support and density struc-
ture. The functor, applicative, and monad instances of the discrete distribution
type are useful for illustrating toy examples like the Monty Hall problem, but
that representation is otherwise limited for obvious reasons.

The ‘canonical’ probability monad is the so-called Giry monad [Lawvere, 1962,
Giry, 1981] which operates on the level of probability measures — themselves
canonical representations of probability distributions. Measure theory is used
to define and develop formal probability and is used almost exclusively in the-
oretical work where rigour is required. One typically proves some result about
probability distributions using canonical measure-theoretic constructs, and then
extends it to other representations as needed. A probability monad based on
measures similarly establishes a canonical probabilistic semantics that can then
be extended to other probability monads as required — the discrete probability
monad type introduced in Chapter 2, for example.

The measure characterization of a probability distribution is chosen in lieu of
things like probability density and mass functions because:

• a probability distribution represented by a probability measure is guaran-
teed to be well-defined for the measurable space under consideration,

• measures can be defined over abstract spaces in which alternate represen-
tations — such as probability mass or density functions, or even cumulative
distribution functions — may not necessarily exist, and

• measures treat probability distributions on abstract spaces in a unified
fashion, using a single language.
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The cost of measure theory, ‘that most arid of subjects when done for its own
sake’ [Williams, 1991], is its relative impenetrableness. Measures can be hard
to think about because one must typically be inundated in some excruciatingly
technical detail when introduced to them.

At least on a semantic level, though, measures seem tomake sense when it comes
to implementing a basis representation for a monadic probabilistic programming
language. A language based on measures should be ‘complete’ in some sense, in
that the representation must by construction be capable of denoting any valid
probability distribution.

In this chapter we’ll construct such an embedded monadic language by inter-
preting the theory and translating it into an implementation of the Giry monad.

3.3 Theoretical Background

It is useful to have a basic categorical language on hand for discussing the notions
of functor, monad, and so on and ascribing rigorous probabilistic interpretations
to them. In this section, we’ll derive the Giry monad from first principles —
from its categorical and measure-theoretic foundations — in order to establish
this language and lay some theoretical groundwork. Some standard references
for background material around the category theory, measure theory, functional
analysis, and integration theory presented here are Mac Lane [1971], Awodey
[2010], Aliprantis and Border [2006], and Pollard [2001].

3.3.1 Categorical Foundations

A category C is a collection of objects and morphisms between them. If W , X ,
Y , and Z are objects in C , then f : W → X , g : X → Y , and h : Y → Z
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are examples of morphisms. These morphisms can be composed in the obvious
associative way, i.e.:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

and there exist identity morphisms that simply map objects to themselves. An
isomorphism is a morphism for which there exists an inverse — object X and
Y are isomorphic, denoted X ∼= Y , if there exist morphisms i : X → Y and
j : Y → X such that j ◦ i = 1X and i ◦ j = 1Y .

A functor is a mapping between categories (equivalently, it’s a morphism in the
category of so-called ‘small’ categories). The functor F : C → D takes every
object in C to some object inD, and every morphism in C to some morphism in
D, such that the structure of morphism identity and composition is preserved.
An endofunctor is a functor from a category to itself, and a bifunctor is a functor
from a pair of categories to another category, i.e. of the form F : A×B → C .

A natural transformation is a structure-preservingmapping between functors. So
for two functors F,G : C → D, a natural transformation ϵ : F → G associates
to every object c in C a morphism ϵc : F (c) → G(c) in D such that for any
f : c→ c′ in C , the following identity holds:

ϵc′ ◦ F (f) = G(f) ◦ ϵc.

A natural isomorphism is a natural transformation for which each ϵc, as above, is
an isomorphism.

A monoidal category C is a category with some additional monoidal structure,
namely an identity object I and a bifunctor ⊗ : C × C → C called the tensor

product, plus several natural isomorphisms that provide the associativity of the
tensor product and its right and left identity with the identity object I .

A monoidal functor is a functor between monoidal categories. For monoidal cat-
egories (C,⊗, I) and (D,⊕, J), a monoidal functor F : C → D is a functor
and associated natural transformations ϕ : F (A) ⊕ F (B) → F (A ⊗ B) and
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i : J → F (I) that satisfy some coherence conditions that we’ll elide here. No-
tably, if ϕ and i are isomorphisms (i.e. are invertible) then F is called a strong

monoidal functor. Otherwise, it’s called lax. A useful special case occurs for end-
ofunctors on a monoidal category (C,⊗, I), in which one only has F : C → C ,
ϕ : F (A)⊗ F (B) → F (A⊗B), and i : I → F (I) to worry about.

A monoid (M,µ, η) in a monoidal category C is an objectM in C together with
two morphisms (obeying the standard associativity and identity properties) that
make use of the category’s monoidal structure: the associative binary operator
µ :M ⊗M →M , and the identity η : I →M .

Finally, a monad is (infamously) a ‘monoid in the category of endofunctors’,
where the monoidal structure is functor composition. So take a category of end-
ofunctors¹ F whose objects are endofunctors and whose morphisms are natural
transformations between them. This is a monoidal category; there exists an iden-
tity endofunctor 1F(F ) = F for allF inF , plus a tensor product⊗ : F×F → F
defined by functor composition such that the required associativity and identity
properties hold. F is thus a monoidal category, and any specific monoid (F, µ, η)
we construct on it is a specific monad.

3.3.2 Probabilistic Foundations

A measurable space (X,X ) is a set X equipped with a topology-like structure
called a σ-algebra X that essentially contains every well-behaved subset ofX in
some sense. Ameasure ν : X → R is a particular kind of set function from the σ-
algebra to the nonnegative real line. A measure just assigns a generalized notion
of area or volume to well-behaved subsets ofX . In particular, if the total possible
area or volume of the underlying set is 1 then we’re dealing with a probability

¹One always considers the category of endofunctors on some particular category — we some-
times omit this detail for brevity, but it is always implied.
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measure. A measurable space completed with a measure, e.g. (X,X , ν) is called
a measure space, and a measurable space completed with a probability measure
is called a probability space. As shorthand, if we denote a measurable space by
M = (X,X ) then we can denote a corresponding measure space by (M, ν), for
example, such that ((X,X ), ν) is understood to mean (X,X , ν).

A measurable set is an element of a σ-algebra in a measurable space, while a
measurable function or random variable is a mapping betweenmeasurable spaces.
Given a ‘source’ measurable space (X,X ) and ‘target’ measurable space (Y,Y),
a measurable function (X,X ) → (Y,Y) is a map T : X → Y with the property
that, for any measurable set in the target, the inverse image is measurable in the
source. Or, formally, for any B in Y , one has that T−1(B) is in X .

The collection of all measurable spaces and measurable functions between them
constitutes a category, denoted Meas, in which objects are measurable spaces
and morphisms are the measurable functions between them.

Meas is a monoidal category. For measurable spaces M = (X,X ) and N =

(Y,Y) — both objects in Meas — one can define the tensor product M ⊗ N as
the Cartesian product X × Y equipped with the σ-algebra X ⊗ Y generated by
the measurable sets A × B for any A ∈ X and B ∈ Y . The identity I is then
defined such thatM ⊗ I = I ⊗M =M for anyM an object in Meas.

We can also use the monoidal structure of Meas to define the concept of product
measure. For probability spaces (M,µ) and (N, ν), the product measure µ× ν is
the unique measure onM⊗N such that (µ×ν)(A×B) = µ(A)ν(B) forA×B
a measurable set inM ⊗N .

Independence is a fundamental probabilistic concept and can be realized in terms
of measurable sets, σ-algebras, or measurable functions. For a probability space
(X,X ,P), measurable sets A and B are independent if

P(A ∩B) = P(A)P(B).
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Two sub-σ-algebras A and B of X are independent if A and B are independent
for any A in A and any B in B. And lastly, for measurable functions f and g
with codomain equipped with a σ-algebra B that each generate a sub-σ algebra
of X via:

Xf = {f−1(B) : B ∈ B}

Xg = {g−1(B) : B ∈ B}

we have that f and g are independent if Xf and Xg are independent.

For any measurable space M in Meas, we can consider the space of all possible
probability measures that could be placed on it and denote that P(M). To be
clear, P(M) is a space of measures — that is, a space in which the points them-
selves are probability measures.

As a probability measure, any element of P(M) is a function from measurable
subsets of M to the interval [0, 1] in R. That is: if M is the measurable space
(X,X ), then a point ν in P(M) is a function X → R. For any measurable A
in M , there naturally exists an ‘evaluation’ mapping denoted τA : P(M) → R
that takes a measure on M and evaluates it on the set A. To be explicit: if ν is
a measure in P(M), then τA simply evaluates ν(A). It ‘runs’ the measure in a
sense; in Haskell, τA would be analogous to a function like λf.fa for some a.

This evaluation map τA corresponds to an integral. If one has a measurable space
(X,X ), then for any A a subset in X , τA(ν) = ν(A) =

∫
X
χAdν for χ the

characteristic or indicator function of A (where χ(x) is 1 if x is in A, and is 0
otherwise). And we can actually extend τ to operate over measurable mappings
from (X,X ) to (R,B(R)), where B(R) is a suitable σ-algebra on R. Here we
typically use what’s called the Borel σ-algebra, which takes a topology on the set
and then generates a σ-algebra from the open sets in the topology (for R we can
just use the ‘usual’ topology generated by the Euclidean metric). For f : X → R
a measurable function, we can define the evaluation mapping τf : P(M) → R
as τf (ν) =

∫
X
fdν.
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We can abuse notation here a bit and just use τ to refer to mappings that evaluate
measures over measurable sets or measurable functions depending on context.
If we treat τA(ν) as a function τ(ν)(A), then τ(ν) has type X → R. If we treat
τf (ν) as a function τ(ν)(f), then τ(ν) has type (X → R) → R. Let τ{A,f} refer
to the mappings that accept either measurable sets or functions.

In any case: for a measurable space M , there exists a topology on P(M) called
theweak-∗ topology that makes all the evaluationmappings τ{A,f} continuous for
any measurable setA or measurable function f . From there, we can generate the
Borel σ-algebraB(P(M)) thatmakes the evaluation functions τ{A,f} measurable.
The result is that (P(M),B(P(M))) is itself a measurable space, and thus an
object in Meas.

3.3.3 P is a Functor

For anyM an object inMeas, we have that P(M) is also an object inMeas. And
if one looks atP like a functor, one notices that it takes objects ofMeas to objects
of Meas. Indeed, one can define an analogous procedure on morphisms in Meas
as follows. Take N to be another object (read: measurable space) in Meas and
T :M → N to be a morphism (read: measurable mapping) between them. Now,
for any measure ν in P(M) we can define P(T )(ν) = ν ◦ T−1 (this is called the
image, distribution, or pushforward of ν under T ). For some T and ν, P(T )(ν)

thus takes measurable sets in N to a value in the interval [0, 1] — that is, it is a
measure on P(N) (see Figure 3.1). So we have that:

P(T ) : P(M) → P(N)

and so P is an endofunctor on Meas.
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(X,X )

R+

(Y,Y)

ν
ϕ = ν ◦ T−1

T

Figure 3.1: Mappings between various spaces. ν is a measure on (X,X ) and T is a measur-

able mapping from (X,X ) to (Y,Y). The measure ϕ, defined on (Y,Y), is the pushforward

of ν under T .

To check the functor laws, note that for anyM ∈ Meas we have:

P (1M) (ν) = ν ◦ (1M)−1

= ν ◦ 1M
= ν

such that P(1M) = 1P(M), satisfying the identity law. For associativity, note for
T :M → N and S : N → P that:

P(S ◦ T )(ν) = ν ◦ (S ◦ T )−1 (image)

= ν ◦
(
T−1 ◦ S−1

)
(inverse)

=
(
ν ◦ T−1

)
◦ S−1 (associativity)

= P(S)
(
ν ◦ T−1

)
(image)

= P(S) (P(T )(ν)) (image)

= (P(S) ◦ P(T )) (ν) (composition)

so that P(S ◦ T ) = P(S) ◦ P(T ), as required.

64



3.3.4 P is a Monad

What is required to assert that P is a monad is to define natural transformations
µ and η such that (P , µ, η) is a monoid in the category of endofunctors onMeas.

First, the identity. We want a natural transformation η between the identity
functor 1F and the functor P such that ηM : 1F(M) → P(M) for any mea-
surable space M in Meas. Evaluating the identity functor simplifies things to
ηM :M → P(M).

We can define this concretely as follows. Grab ameasurable spaceM inMeas and
define η(x)(A) = χA(x) for any point x ∈ M and any measurable set A ⊆ M .
η(x) is thus a probability measure on M — we assign 1 to measurable sets that
contain x, and 0 to those that don’t. If we peel away another argument, we have
that η : M → P(M), as required. So, η takes points in measurable spaces to
probability measures on those spaces. In technical parlance, it takes a point x to
the Dirac measure at x — the probability measure that places the entirety of its
mass at x.

Recall that any category of endofunctors, F , is monoidal, so there exists a tensor
product ⊗ : F × F → F that we can deal with, which here just corresponds to
functor composition. We’re looking for a natural transformation:

µ : P ◦ P → P

which is often written as:
µ : P2 → P .

Take M = (X,X ) a measurable space in Meas and then consider the space of
probability measures over it, P(M). Then take the space of probability measures
over the space of probability measures onM , P(P(M)). Since P is an endofunc-
tor, this is again a measurable space, and for any measurable subset A ofM we
again have a family of mappings τA that take a probability measure in P(P(M))
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and evaluate it on A. We want µ to be the construct that turns a measure over
measures ρ into a probability measure on P(M).

In the context of probability theory, this kind of semigroup action is amarginaliz-

ing operator. We’re taking the ‘uncertainty’ captured in P(P(M)) via the prob-
ability measure ρ and smearing it into the probability measures in P(M).

Take ρ in P(P(M)) and some A a measurable subset ofM . We can define µ as
follows:

µ(ρ)(A) =

∫
P(M)

τAdρ.

Using some lambda calculus notation to see the argument for τA, i.e. equating
the function f(x) = y with the expression λx.y, we can expand the integrals to
get the following expression:

µ(ρ)(A) =

∫
P(M)

{
λν.

∫
M

χAdν

}
dρ.

Notice what’s happening here. For M a measurable space, we’re integrating
over P(M) the space of probability measures on M , with respect to the proba-
bility measure ρ, which itself is a point in the space of probability measures over
probability measures onM , P(P(M)) (see Figure 3.2).

The spaces we’re integrating over here are unusual, but ρ is still a probability
measure, so when applied to a measurable set in B(P(M)) it results in a proba-
bility in [0, 1]. So, peeling back an argument, we have that µ(ρ) has typeX → R.
In other words, it’s a probability measure onM , and thus is in P(M). And if we
peel back another argument, we find that:

µM : P(P(M)) → P(M)

so, as required, that
µ : P2 → P .
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M P(M) P(P(M))

N P(N) P(P(N))

P
P

P P

µ

µ

T P(T ) P(P(T ))

Figure 3.2: Mappings between various spaces. Each application of P to a measurable space

brings it to the space of measures over itself, while applying P to a measurable mapping

brings it to a mapping between the space of measures on each. The core monadic ‘join’

operator µ normalizes a tower of spaces of measures by one level.

It’s also worth noting that we can overload the notation for µ in the same way
we did for τ , i.e. to supply measurable functions in addition to measurable sets:

µ(ρ)(f) =

∫
P(M)

{
λν.

∫
M

fdν

}
dρ.

Combining the three components, we get (P , µ, η), the canonical Giry monad.

Recall that in Haskell, when we’re dealing with monads we typically use the
bind operator ≫= instead of manually dealing with the functorial structure and
µ (called ‘join’). Bind has the type:

≫=: P(M) → (M → P(N)) → P(N)

and we can define ≫= for the Giry monad like so:

(ρ≫= g)(f) =

∫
M

{
λm.

∫
N

fdg(m)

}
dρ.

Here ρ is in P(M), g is in M → P(N), and f is in N → R, so note that we
potentially simplify the outermost integral enormously. It now operates over a
general measurable space, rather than a space of measures in particular.
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We can verify that the Giry monad satisfies the monad laws as follows. Note first
that the Dirac measure δx at some point x has the property:

δx(f) =

∫
fdδx

= f(x)

so that right-identity is established by:

ρ≫= δ = λf.

∫
M

{
λm.

∫
M

fd(δm)

}
dρ

= λf.

∫
M

{λm.f(m)} dρ (Dirac)

= λf.

∫
M

fdρ

= ρ.

Left-identity follows similarly. Given some x, one has that:

δx ≫= g = λf.

∫
M

{
λm.

∫
N

fd(g(m))

}
dδx

= λf.

(
λm.

∫
N

fd(g(m))

)
(x) (Dirac)

= λf.

∫
N

fd(g(x))

= g(x)

as required. For associativity, note that for ρ ∈ P(M), g : M → P(N), and
h : N → P(Q) we have:

(ρ≫= g) ≫= h =

(
λf : N → R.

∫
M

{
λm.

∫
N

fdg(m)

}
dρ

)
≫= h

= λf : Q→ R.
∫
M

{
λm.

∫
N

{
λn.

∫
Q

fdh(n)

}
dg(m)

}
dρ
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and

ρ≫= (λm.g(m) ≫= h) = λf.ρ≫=
(
λm.

∫
N

{
λn.

∫
Q

fdh(n)

}
dg(m)

)
= λf.

∫
M

{
λm.

∫
N

{
λn.

∫
Q

fdh(n)

}
dg(m)

}
dρ

so that (ρ≫= g) ≫= h = ρ≫= (λm.g(m) ≫= h), as required.

3.3.5 P is an Applicative Functor

Any monad immediately generates an applicative functor, and the Giry monad
is no exception. An applicative functor is a certain parameterization of a lax
monoidal functor, so to demonstrate thatP has a lax monoidal structure we need
to define a natural transformation ϕ such that:

ϕ : P(M)⊗ P(N) → P(M ⊗N).

We can write this in terms of the monadic natural transformations µ and η. Eval-
uating right-to-left, for measures ν and ρ we get:

ϕν×ρ = µP {λm.µP (λn.ηm×n)P(ρ)}P(ν)

which can equivalently be written using bind as:

ϕν×ρ = ν ≫= λm.ρ≫= λn.ηm×n.

Re-using η for the identity, we have that (P , ϕ, η) is a lax monoidal functor and
thus an applicative functor (see Figure 3.3).

3.4 Measure, Integral, and Continuation

So, we’ve established the Giry monad as a triple (P , µ, η), where P is an end-
ofunctor on the category of measurable spaces Meas, µ is a marginalizing inte-
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P(M)

P(M)⊗ P(N)

P(N)

P(M ⊗N)
ϕ

Figure 3.3: Mappings between various spaces. P(M) ⊗ P(N) is the product of the spaces

of measures over M and N respectively and has the natural projections associated with a

product. The natural transformation ϕ corresponding to the monoidal structure of P takes

that product to the space of measures over the product M ⊗N .

gration operation defined by:

µ(ρ)(A) =

∫
P(M)

{
λν.

∫
M

χAdν

}
dρ

and η is a monoidal identity, defined by the Dirac measure at a point:

η(x)(A) = χA(x).

How do we actually implement this? The Giry monad is very generally con-
structed, but it presents numerous difficulties when it comes to implementing
a consistent framework for measures in an embedded language. The most glar-
ing difficulty is that a measure space is, in general, a fundamentally intractable
object to represent explicitly, so that approach is a non-starter.

But it can be done. The key to implementing a general-purpose Giry monad is to
notice that the fundamental operation involved in it is integration, and that we
can avoid working with σ-algebras and measurable spaces directly if we focus
on dealing with measurable functions instead of measurable sets.

Consider the integration map on measurable functions τf . For some measurable
function f , τf takes a measure on some measurable spaceM = (X,X ) and uses
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it to integrate f over X . In other words:

τf (ν) =

∫
X

fdν.

Ameasure inP(M) has typeX → R, so τf has corresponding type (X → R) →
R.

Switching back to programming languages, this type is analogous to the type
of a continuation, a well-known data structure that is capable of representing
programs in a well-defined sense. Continuations are reifications of the control
state of a program as an explicit data structure; they can be used to implement
various functionality in programming languages, such as exception handling,
concurrency primitives, unbounded queues. They have even been used for han-
dling inference – rather than representation – in certain embedded probabilistic
programming frameworks [Kiselyov and Shan, 2008]. Loosely, a continuation
can be thought of as ‘a program with a missing piece’. To use a continuation,
one supplies it with said missing piece and runs the resulting program.

A continuation in Haskell can be defined as follows:

newtype Cont a r = Cont ((a -> r) -> r)

Wadler [1994] demonstrated that this type forms a monad, and thus it also forms
a functor and applicative functor. The continuation monad is a standard monad
in the Haskell ecosystem and implementations can be found in the transformers

library, amongst other places.

If we restrict the rightmost type parameter of ‘Cont’ to the reals, the type be-
comes quite faithful to the integration map:

newtype Integral a = Integral ((a -> Double) -> Double)

71



Now, let’s overload notation and call the integration map τf itself a measure.
That is, τf is a mapping ν 7→

∫
X
fdν, so we’ll just interpret the notation ν(f) to

mean the same thing:
∫
X
fdν. This is convenient because we can dispense with

τ and just pretend measures can be applied directly to measurable functions.
There’s nowaywe can get confused here; measures operate on sets, not functions,
so notation like ν(f) is not currently in use. We just set ν(f) = τf (ν) and that’s
that. The ‘Integral’ type can be renamed to match:

newtype Measure a = Measure ((a -> Double) -> Double)

We can extract a very nice shallowly-embedded language for integration here,
the core of which is a single term:

integrate :: (a -> Double) -> Measure a -> Double

integrate f (Measure nu) = nu f

Note that this is the samewaywe’d express integrationmathematically; we spec-
ify that we want to integrate a measurable function f with respect to some mea-
sure ν: ∫

fdν = integrate f nu.

The only subtle difference here is that we don’t specify the space we’re integrat-
ing over in the integral expression — instead, we’ll bake that into the definition
of the measures we create themselves.

What’s interesting here is that the Giry monad has the same implementation as
the continuationmonadwith the rightmost type parameter restricted to the reals.
This isn’t surprising when one thinks about what’s going on here — we’re rep-
resenting measures as integration procedures, that is, programs that take a mea-
surable function as input and then compute its integral in some particular way,
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returning a real number. A measure, as we’ve implemented it here, is just a ‘pro-
gram with a missing piece’. And this is exactly the essence of the continuation
monad in Haskell.

A continuation monad implementation like that in the transformers library often
comes equipped with a supporting function like ‘callCC’, or ‘call with current
continuation’ that does not have any obvious probabilistic interpretation. We
define a separate ‘Measure’ type, rather than using a generic ‘Cont’ type, just to
remove the possibility of accidentally using this function anywhere.

3.4.1 Typeclass Instances

We can fill out the functor, applicative, and monad instances for the ‘Measure’
type mechanically via reference to a standard continuation monad implementa-
tion, and each instance gives us some familiar conceptual structure or operation
on probability measures. These semantics are identical to those described for
the probability monad constructed in Chapter 2 — just on the level of measures,
rather than discrete distributions.

The functor instance for ‘Measure’ lets us transform the support of a measure
space while keeping its density structure invariant. If we have:

ν(f) =

∫
X

fdν

for f : X → R, then mapping a measurable transformation g : X → Y over the
measure corresponds to:

(fmap g ν)(f) =

∫
X

(f ◦ g)dν

where now f : Y → R. The functor structure allows us to precisely express a
pushforward measure or distribution of ν under g as described in Section 3.3.3.
In Haskell, the functor instance corresponds exactly to the math:
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instance Functor Measure where

fmap g nu = Measure (\f ->

integrate (f . g) nu)

It is straightforward (if tedious) to show this instance satisfies the functor laws.
Note that we have:

fmap id nu

= Measure (\f -> integrate (f . id) nu)

= Measure (\f -> integrate f nu)

= nu

fmap (g . h) (Measure nu)

= Measure (\f -> integrate (f . (g . h)) (Measure nu))

= Measure (\f -> integrate (f . g . h) (Measure nu))

= Measure (\f -> nu (f . g . h))

= Measure (\f’ -> (\f -> nu (f . h)) (f’ . g))

= Measure (\f’ -> integrate (f’ . g) (Measure (\f -> nu (f . h))))

= fmap g (Measure (\f’ -> integrate f’ (Measure (\f -> nu (f . h)))))

= fmap g (Measure (\f’ -> (\f -> nu (f . h)) f’))

= fmap g (Measure (\f -> nu (f . h)))

= fmap g (Measure (\f -> integrate (f . h) (Measure nu)))

= fmap g (fmap h (Measure (\f -> integrate f (Measure nu))))

= fmap g (fmap h (Measure nu))

= (fmap g . fmap h) (Measure nu)

so that ‘fmap id = id’ and ‘fmap (g . h) = fmap g . fmap h’, as required.

The monad instance reflects exactly the Giry monad structure developed previ-
ously, and it allows us to sequence probability measures together bymarginaliz-

ing one into another. We’ll write it in terms of bind, which went like:

(ρ≫= g)(f) =

∫
M

{
λm.

∫
N

fdg(m)

}
dρ.
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The Haskell translation is verbatim:

instance Monad Measure where

return x = Measure (\f -> f x)

rho >>= g = Measure (\f ->

integrate (\m -> integrate f (g m)) rho)

Since our monad encoding is equivalent to the continuation monad, we can cite
Wadler [1994] to assert that the above definition satisfies the monad laws.

There’s also the Applicative instance, which can be implemented in terms of the
Monad instance in a standard fashion. For anymonad, we can define an analogue
of the natural transformation ϕ as:

phi :: Monad m => (m a, m b) -> m (a, b)

phi (m, n) = do

a <- m

b <- n

return (a, b)

The probabilistic interpretation here is that ϕ takes a pair of probability measures
to the product measure over the appropriate product space. For measures µ and
ν on (X,X ) and (Y,Y) respectively, we thus have:

ϕ(µ, ν)(f) =

∫
X×Y

fd(µ× ν)

where f : X × Y → R. And then for g : X × Y → Z we can use the functor
structure of P to do:

(fmap g ϕ(µ, ν))(f) =

∫
X×Y

(f ◦ g)d(µ× ν)

where now f : Z → R, which corresponds to an applicative expression ‘fmap g
(phi mu nu)’.
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Recall from Chapter 2 that the applicative structure of a probability monad al-
lows us to perform convolution and similar algebraic operations on probability
distributions. It is illustrative to examine why this is the case.

Take a measurable spaceM = (X,X )whereX is equipped with a ring structure
so that it is closed under addition, subtraction, and multiplication. For measures
µ and ν onM we can define the convolution of measures as follows:

(µ+ ν)(f) =

∫
X

∫
X

f(x+ y)dµ(x)dν(y).

The probabilistic interpretation here is that µ+ ν is the measure corresponding
to the sum of independent measurable functions g and h with corresponding
measures µ and ν respectively. To reiterate: if one has independent g ∼ µ and
h ∼ ν, then g + h ∼ µ+ ν.

Note that it is impossible for measures to be independent in any well-defined
sense, but there is still a useful connection to independence that can be gleaned.
To see it, complete M with some abstract probability measure P to form the
probability space (X,X ,P) and take g and h to be the measurable functions from
X to R that fall out of the probabilistic interpretation of measure convolution.
To say that g and h are independent is to say that their generated σ-algebras are
P-independent, and the measures that they correspond to are the pushforwards
of P under g and h respectively. So, µ = P ◦ g−1 and ν = P ◦ h−1. The result
is that the measurable functions correspond to different (pushforward) measures
µ and ν, but are independent with respect to the same underlying probability
measure P.

The monoidal structure of P then gets us to convolution and friends. Given a
product of measures µ and ν each on (X,X ) we can immediately retrieve their
product measure µ × ν via the monoidal natural transformation ϕ. And from
there we can get to µ + ν via the functor structure of P — we just find the
pushforward of µ × ν with respect to a function π that collapses a product via

76



addition. So π : X ×X → R is defined as:

π(a× b) = a+ b

and then the convolution µ+ ν is thus:

µ+ ν = (µ× ν) ◦ π−1

= λf.

∫
X×X

(f ◦ π)d(µ× ν)

= λf.

∫
X

∫
X

f(x+ y)dµ(x)dν(y).

Other operations can be defined similarly, e.g. for σ(a× b) = a− b we get:

µ− ν = (µ× ν) ◦ σ−1.

The crux of all this is that the concept of product measure always allows us to ex-
tract notions of independent measurable functions corresponding to its compo-
nents. Moreover, the notion is not limited to convolution or other ring-like oper-
ations. For probability spacesM = (X,X , µ),N = (Y,Y , ν), andQ = (Z,Z, ρ)
we can construct a product measure µ×ν×ρ over the productM⊗N⊗Q such
that for aX⊗Y⊗Z-measurable function g : (X,Y, Z) → R, we can say that the
pushforward (µ× ν× ρ) ◦ g−1 corresponds to the measure for g applied to some
independent random variables gµ, gν , and gρ. Indeed this is trivially true for any
finite product measure, which is all we need concern ourselves with here.

The same could not be said if we used the general monadic structure to apply
a function like g : X → Y → Z → P((R,B)) to the measures µ, ν, and ρ.
In such a case, the product structure is not enforced, so we can’t guarantee that
the resulting random variables are independent. For this reason, the applicative
structure of the Giry monad turns out to be useful for encoding independence in
expressions in a way that the monadic structure is not.

Given the ‘phi’ function defined previously, the applicative instance itself could
be written in terms of the following monad-generated ‘ap’ function:
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ap :: Monad m => m (a -> b) -> m a -> m b

ap f x = fmap apply (phi f x) where

apply (g, z) = g z

but instead, the CPS-type implementation we use here makes it possible to write
the applicative instance without referring to any monadic binds at all:

instance Applicative Measure where

pure x = Measure (\f -> f x)

Measure g <*> Measure h = Measure (\f ->

g (\k -> h (f . k)))

3.5 Conceptual Example

It’s worth taking a look at an example of how things should conceivably work
here. Consider the following probabilistic model:

π ∼ beta(α, β)

µ |π ∼ binomial(n, π)

It’s a standard hierarchical presentation. A ‘compound’ measure can be obtained
here by marginalizing over the beta measure π, leading to the well-known beta-

binomial measure. We’ll demonstrate how this proceeds in practice.

The beta distribution has support on the [0, 1] subset of the reals, and the bino-
mial distribution with argument n has support on the {0, . . . , n} subset of the
integers, so we know that things should proceed like so:

ψ(f) = (π ≫= µ)(f)

=

∫
R

{
λp.

∫
Z
fdµ(p)

}
dπ.
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Eliding some theory of integration, we have that π is absolutely continuous with
respect to Lebesgue measure (denoted dx) and that µ(p) is absolutely continuous
with respect to counting measure (denoted d#) for appropriate p. So, π admits a
density dπ/dx = gπ and µ(p) admits a density dµ(p)/d# = gµ(p), defined as:

gπ(p |α, β) =
1

B(α, β)
pα−1(1− p)β−1

and
gµ(p)(x |n, p) =

(
n

x

)
px(1− p)n−x

respectively, for B the beta function and
(
n
x

)
a binomial coefficient. Again, we

can reduce the integral as follows, transforming the outermost integral into a
standard Riemann integral and the innermost integral into a simple sum of prod-
ucts:

ψ(f) =

∫ 1

0

λp.

λα.λβ.gπ(p |α, β) ∑
z∈{0,...,n}

f(z)
(
λn.gµ(p)(z |n, p)

) dx.

where dx again denotes Lebesgue measure. This can be expanded or simplified
further (the beta and binomial are conjugates) but the point is that we have a
way to evaluate the integral.

What is really required here then is to be able to encode into the definitions of
measures like π and µ(p) themethod of integration to use when evaluating them.
For measures absolutely continuous with respect to Lebesgue measure, we can
use the Riemann integral over the reals. Formeasures absolutely continuouswith
respect to counting measure, we can use a sum of products. In both cases, we’ll
also need to supply the density or mass function by which the integral should be
evaluated.
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3.6 Using The Measure Representation

In the following sections we’ll describe what we can do with our encoding of
the Giry monad. We’ll describe constructing, querying, and manipulating mea-
sures by way of a number of small examples, ending with a larger example of a
stochastic process measure for the Chinese Restaurant Process.

3.6.1 Constructing Measures

Recall that we are representing measures as integration procedures. So to create
one is to define a program by which we’ll perform integration.

Let’s start with the conceptually simpler case of a probability measure that’s
absolutely continuous with respect to counting measure. We need to provide
a support and a probability mass function so that we can weight every point
appropriately. Then we just want to integrate a function by evaluating it at every
point in the support, multiplying the result by that point’s probability mass, and
summing everything up. In code, this translates to:

fromMassFunction :: (a -> Double) -> [a] -> Measure a

fromMassFunction p support = Measure (\f ->

foldl’ (\acc x -> acc + p x * f x) 0 support)

So if we want to construct a binomial measure, we can do that like so:

binomial :: Int -> Double -> Measure Int

binomial n p = fromMassFunction (pmf n p) [0..n] where

pmf n p k

| x < 0 || n < k = 0

| otherwise = choose n k * p ^^ k * (1 - p) ^^ (n - k)
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the resulting measure corresponds to the following integration expression:

ν(f) =
∑

k∈{0,...,n}

f(k)

(
n

k

)
pk(1− p)n−k.

The second example involves measures over the real line that are absolutely con-
tinuous with respect to Lebesgue measure. In this case we want to evaluate a
Riemann integral over the entire real line, which is going to necessitate approx-
imation on our part. There are numerous methods for approximating integrals,
but a simple one for one-dimensional problems like this is tanh-sinh quadrature

[Takahasi and Mori, 1974], an implementation for which exists in the integration
package on Hackage.

fromDensityFunction :: (Double -> Double) -> Measure Double

fromDensityFunction d = Measure (\f ->

quadratureTanhSinh (\x -> f x * d x))

where

quadratureTanhSinh = result . last . everywhere trap

Here we’re using quadrature to approximate the integral, but otherwise it has
a similar form as ‘fromMassFunction’. The difference is that we’re integrating
over the entire real line, so don’t have to supply a support explicitly. It’s worth
reiterating that we could in principle use any approximate integration procedure
here, for example by plugging in a Monte Carlo framework implementing rejec-
tion or importance sampling. But quadrature provides an effective, low-effort
choice for measures with unidimensional support.

We can use this to create a beta measure as follows:

beta :: Double -> Double -> Measure Double

beta a b = fromDensityFunction (density a b) where

density a b p
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| p < 0 || p > 1 = 0

| otherwise =

1 / exp (logBeta a b) * p ** (a - 1) * (1 - p) ** (b - 1)

and this corresponds to the quadrature approximation of the expected Riemann
integral:

η(f) ≈
∫ ∞

−∞
f(p)

1

B(α, β)
pα−1(1− p)β−1dp.

Note that since we’re going to be integrating over the entire real line and the
beta distribution has support only over [0, 1], we need to implicitly define the
support in the probability density function by specifying which regions of the
domain will lead to a density of 0.

In any case, now that we’ve constructed those measures we can just use a mon-
adic bind to create the beta-binomial measure described previously. It masks a
lot of under-the-hood complexity:

betaBinomial :: Int -> Double -> Double -> Measure Int

betaBinomial n a b = beta a b >>= binomial n

We could equally express the beta-binomial using do-notation in order to make
its internal dependency structure more explicit:

betaBinomial :: Int -> Double -> Double -> Measure Int

betaBinomial n a b = do

p <- beta a b

binomial n p

Another useful measure-creating function involves using a sample from some
distribution in order to create an empirical measure. This is equivalent to passing
in a specific support for which the mass function assigns equal probability to
every element:
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fromSample :: Foldable f => f a -> Measure a

fromSample = Measure . flip weightedAverage

where ‘weightedAverage’ is a function that, given a weighting function with
type (a → r) and a container of values fa, returns a weighted average of type
r. Flipping the argument order of ‘weightedAverage’ gives it the required type
(a → r) → r, which is then wrapped into a continuation. Note that this also
implies that we can define measures in terms of sampling functions by drawing
a sample from a distribution and passing that to ‘fromSample’, but we will not
illustrate this here.

3.6.2 Querying Measures

To query a measure is to simply get some result out of it, and we do that by
integrating some measurable function against it. The measurable function that
we integrate encodes the query.

Given a probability space (X,X , ν), the simplest thing to do is to just integrate
the constant function f(x) = 1 against ν over X :∫

X

1dν = integrate (const 1) nu.

This should trivially yield 1 for any probability space. We can illustrate this
against the beta and beta-binomial measures created previously, for example
(noting approximation error due to quadrature):

> integrate (const 1) (beta 10 10)

0.9999999999949557

> integrate (const 1) (betaBinomial 10 5 4)

1.000001641955738
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The most fundamental query is the straightforward expectation, which simply
involves integrating the identity function f(x) = x against a measure. This
query is so fundamental that we can build a new function for it:

expectation :: Measure Double -> Double

expectation = integrate id

We then have the identity:∫
X

{λx.x} dν = expectation nu

and we can use it to calculate the means of the same beta and beta-binomial
distributions. For a beta(10, 10) distribution this is straightforward:

> expectation (beta 10 10)

0.49999999999501316

and since the mean of a beta(α, β) distribution is α/(α+β) this is easily verified.

For the beta-binomial, or any measure not defined over the (Haskell-encoded)
reals, the story is slightly different. Attempting to calculate an expectation of
the beta-binomial(10, 5, 4) measure yields the following:

> expectation (betaBinomial 10 5 4)

error:

• Couldn’t match type ‘Int’ with ‘Double’

Expected type: Measure Double

Actual type: Measure Int

Note that the ‘expectation’ function assumes the target measure is defined over
the reals, and this is not the case for the beta-binomial (which is defined over
the integers). We can deal with this by integrating the ‘fromIntegral’ function
λn : Z.n : R that simply casts integers to reals against the beta-binomial instead:
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> integrate fromIntegral (betaBinomial 10 5 4)

5.5555721648806635

a beta-binomial(n, α, β) distribution hasmean nα/(α+β) sowe can easily verify
that this has hit the mark.

We are not limited to expectation and can indeed calculate arbitrary higher-order
moments of measures. The second (central) moment of a distribution is the vari-
ance, for example, and we can express this in the usual way. Using the same
running abstract probability space as an example, we can express the variance
of ν as:

var(ν) =
∫
X

{λx.x2}dν −
(∫

X

{λx.x}dν
)2

= integrate (^ 2) nu - expectation nu ^ 2

It is illustrative to demonstrate this over something like a binomial(n, p) distri-
bution, for example. Analytically the variance is known to be np(1 − p), so for
n = 10 and p = 0.5 we will expect to see 2.5. But as the binomial is defined
over the integers, we have the same problem we encountered in the last exam-
ple. Here instead of manually computing the variance using ‘fromIntegral’, we
can exploit the functorial structure of measures to adapt the binomial measure
to a different measurable space:

> variance (fmap fromIntegral (binomial 10 0.5))

2.5

More generally, we can calculate the nth raw or central moment of a measure as
follows:

rawMoment :: Int -> Measure Double -> Double

rawMoment n = integrate (^ n)
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centralMoment :: Int -> Measure Double -> Double

centralMoment n nu = integrate (\x -> (x - rm) ^ n) nu where

rm = rawMoment 1 nu

More exotic moment-based constructions follow similarly. The moment- and
cumulant-generating functions for a measure ν, for example, can be defined as:

Mν(t) =

∫
{λx.etx}dν

Kν(t) = logMν(t)

and these yield the following bindings:

mgf :: Measure Double -> Double -> Double

mgf nu t = integrate (\x -> exp (t * x)) nu

cgf :: Measure Double -> Double -> Double

cgf nu = log . mgf nu

For illustration, Figure 3.4 displays the recovered cumulant generating functions
for a binomial measure, a beta-binomial measure, and a convolution of indepen-
dent binomial measures (we’ll discuss convolution in the next section).

The cumulative distribution function (CDF) is another good example of a function
that can be extracted from a measure, assuming the measure is defined over a
space that has a notion of order. For a measure defined on the reals, for example,
we have that its corresponding CDF is:

F (x) = ν({−∞, x})

=

∫
R
χ{−∞,x}dν

and we can encode it here by following the math:
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Figure 3.4: A plot of the cumulant generating functions (CGFs) recovered from various mea-

sures over the interval t ∈ [−5, 5]. The red curve corresponds to a binomial(10, 0.5) mea-

sure, the green to a beta-binomial(10, 1, 2) measure, and the blue to the measure defined

by binomial(10, 0.5) + binomial(10, 0.2). The CGF for a binomial(n, p)measure is known

to be n log(1− p+ pet) and is additive in the case of convolution.

cdf :: Measure Double -> Double -> Double

cdf nu x = integrate (ninfty ‘to‘ x) nu where

ninfty = negate (1 / 0)

to a b x

| x >= a && x <= b = 1

| otherwise = 0

Every student of statistics is familiar with the probabilities of some standard
regions of R under a Gaussian distribution, so it is a useful measure to use for
demonstrating the CDF. We’ll define a one-dimensional Gaussian measure using
its density:

gaussian :: Double -> Double -> Measure Double

gaussian m s = fromDensityFunction (density m s) where
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density m s x

| s <= 0 = 0

| otherwise =

1 / (s * sqrt (2 * pi)) *

exp (negate ((x - m) ^^ 2) / (2 * (s ^^ 2)))

Now, it is well-known that for a standard Gaussian measure, the probability of
the region one standard deviation about the mean is approximately 0.68. We can
check that using the CDF in the standard method one does in an introductory
statistics course, à la FN(0,1)(1)− FN(0,1)(−1):

> cdf (gaussian 0 1) 1 - cdf (gaussian 0 1) (negate 1)

0.6768132427467803

Other calculations proceed similarly. We can even create an analogue to the CDF
for measurable spaces lacking any notion of order; the following ‘containing’
function calculates the probability of a region containing some given points, for
example:

containing :: Eq a => [a] -> a -> Double

containing xs x

| x ‘elem‘ xs = 1

| otherwise = 0

Then for a simple unordered space and measure like:

data Foo = Bar | Baz | Qux deriving Eq

fooMeasure :: Measure Foo

fooMeasure = fromSample [Bar, Bar, Baz, Qux, Baz, Baz]
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we can still calculate a cumulative probability analogue:

> integrate (containing [Baz]) fooMeasure

0.5

> integrate (containing [Baz, Bar]) fooMeasure

0.8333333333333334

> integrate (containing [Baz, Bar, Qux]) fooMeasure

1.0

3.6.3 Operations on Product Measures

Since the applicative instance trivially grants us simple analogues for our ring
operations, we can implement a ‘Num’ instance for the ’Measure’ type as follows:

instance Num a => Num (Measure a) where

(+) = liftA2 (+)

(-) = liftA2 (-)

(*) = liftA2 (*)

abs = fmap abs

signum = fmap signum

fromInteger = pure . fromInteger

The implementation for the addition operator ‘+’ in particular grants us measure
convolution (see Figure 3.5).

It is instructive to demonstrate convolution by constructing aχ2 measure. Rather
than define it directly via its probability density function, we can express it in
terms of a sum of squared standard Gaussian measures as follows:

chisq :: Int -> Measure Double

chisq k = sum (replicate k sqgauss) where

sqgauss = fmap (^ 2) (gaussian 0 1)
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(R2,B ⊗ B)

R+

(R,B)

PX × PY
PX+Y = (PX × PY ) ◦ π−1

π

Figure 3.5: Mappings between various spaces. Here, PX × PY is a product measure over

(R2,B ⊗ B). The function π : R2 → R is defined as π({x, y}) = x + y and collapses

any element of R2 into an element of R by summing its components together. Pushing it

onto the product measure PX × PY creates the pushforward measure PX+Y . This is an

equivalent construction for measure convolution as described in Section 3.3.

The ‘chisq’ expression creates a list of k squared standard Gaussians and then
simply adds them up, resulting in a χ2 measure with degrees of freedom k. We
can sanity check the implementation by calculating its mean and variance, which
are known to be k and 2k respectively:

> expectation (chisq 2)

2.0000000000000004

> variance (chisq 2)

4.0

As a second example, consider a measure defined by the product of independent
Gaussianmeasures. This is a trickier distribution to deal with analytically, but we
can use some well-known identities for general independent random variables in
order to verify our results. For independent random variables f and g, we have:

E(fg) = EfEg
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and
var(fg) = var(f)var(g) + var(f)(Eg)2 + var(g)(Ef)2

for the expectation and variance of their product. Since independence is enforced
under the productmeasure, we can calculate these for a product of Gaussian(1, 2)
and Gaussian (2, 3) measures and expect to see 2 for its expectation and 61 for
its standard deviation:

> expectation (gaussian 1 2 * gaussian 2 3)

2.0000000000000001

> variance (gaussian 1 2 * gaussian 2 3)

61.00000000000003

It is worth pointing out that while convolution and associated operators carry
some familiar algebraic intuitions, they do not correspond one-to-one with ring
operations per se. In particular, the expression ν+ν does not really correspond to
the intuitive 2ν, nor does the expression ν−ν correspond to 0, and so on. As de-
tailed in Section 3.3, the correct intuition is that a measure expression consisting
of ring operations corresponds to the distribution of independent random vari-
ables pieced together using the same expression. The reason we don’t get true
ring operations on measures is because we don’t define any notion of equality
on measures, and so ν + ν must be interpreted as the distribution of the sum of
two independent and identically-distributed random variables — not the sum of
two copies of the same measure. This is typically made explicit when discussing
random variables; a sum

∑
i∈I fi of independent and identically-distribution (iid)

random variables fi is never interpreted to mean |I|f .

Similarly, it’s also worth noting that we don’t define any notion of ‘measure
division’. Its expression would correspond to:

µ

ν
(f) =

∫
X

∫
X

f

(
x

y

)
dµ(x)dν(y)
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which is only defined if X does not contain an additive identity element (i.e. if
X has only a semigroup or semiring structure). Since we are always integrating
over the entire spaceX , we can’t avoid touching y = 0 if it exists, leaving f(x/y)
and thus the integral undefined for any x in X .

A final interesting example that illustrates the flexibility of our implementation
involves convolving an empirical measure with a measure absolutely continuous
with respect to Lebesgue measure. Given a sample of points in R drawn from
some distribution (possibly via Monte Carlo or some other experimental proce-
dure), we can ‘smooth’ it via convolution with a proper Gaussian, for example:

-- kept abstract

observations :: [Double]

empirical :: Measure Double

empirical = fromSample observations

smoothed :: Measure Double

smoothed = gaussian 0 1 + empirical

We can then query the smoothed measure for its moments, CDF (see Figure 3.6),
and so on. If ‘observations’ is a list of 15 values sampled from a Gaussian(0.5, 1)
distribution, for example, then we find moments like the following from the
smoothed measure:

> expectation smoothed

0.2853184714048533

> variance smoothed

2.5247155156731
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Figure 3.6: A plot of the cumulative distribution functions recovered from three measures.

The red CDF corresponds to a standard Gaussian measure, the green CDF to an empiri-

cal measure constructed by sampling 15 values from a Gaussian(0.5, 1) distribution, and

the blue CDF to the smoothed Gaussian obtained by convolving the previous two measures

together.

3.7 Example: Chinese Restaurant Process Measure

As a more heavyweight example, we can create a measure characterizing the
Chinese Restaurant Process (CRP), a stochastic process used as a prior in various
nonparametric Bayesian models. Figure 3.7 shows a standard visualization of
the CRP; it is a probability distribution over the space of finite partitions of the
natural numbers and is useful in clustering and partitioning problems.

The CRP describes the arrival of customers at a hypothetical Chinese restaurant
with an infinite number of tables. The first customer arrives from the left and sits
at the first table deterministically. For Rn denoting the state of the restaurant
with n customers, the n + 1th customer decides where to sit according to the
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Figure 3.7: A sequential visualization of the Chinese Restaurant Process, where the indexed

θ parameters represent tables and the smaller ‘orbiting’ circles represent customers. The

customers are labelled by their arrival order.

probability mass function

P (occupied table k |Rn) ∝ number of customers at table k (3.1)

P (next unoccupied table |Rn) ∝ α

where α > 0 is a dispersion parameter such that the expected number of occu-
pied tables increases monotonically with it.

To demonstrate how our shallowly-embedded language operates with standard
facilities and libraries in the host language, we can implement a measure for a
CRP by using the ‘Measure’ type and its associated functions alongside a mix of
ad-hoc Haskell data structures and other host language functionality.

We’ll make use of an ‘IntMap’, which is a simple key/value data store where the
key type is restricted to the integers. It is available in the containers library on
Hackage, and we’ll define a couple of helper functions to count what will be the
number of customers and tables in a Chinese restaurant respectively:

import qualified Data.IntMap.Strict as IMS

customers :: IMS.IntMap Int -> Int

customers = IMS.foldl’ (+) 0

tables :: IMS.IntMap a -> Int

tables = IMS.size
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We’ll denote a table in our restaurant by a simple pair of integers. The first
component will be the table’s label, and the second will be the number of diners
currently seated at it. We’ll define an entire restaurant at the nth customer arrival
by an IntMap, which encodes the number of diners seated at each occupied table:

type Table = (Int, Int)

type Restaurant = IMS.IntMap Int

The strategy here is to create a measure over individual tables, and then use that
to create a ‘kernel’ measure over restaurants of size n + 1, given a restaurant
of size n. We can then create a measure over generic restaurants of size n by
recursively iterating the kernel measure n times. The key is to focus on solving
the smaller problems, and then compose those solutions together to solve the
grander problem.

Let d(t) denote the number of diners sitting at a table t. Building on Equation
3.1, the precise probability mass function for a table t given a restaurant Rn of
size n is:

P (t |Rn, α) =

 α
n+α

d(t) = 0

d(t)
n+α

d(t) > 0

and we can encode it analogously as follows:

pmf :: Restaurant -> Double -> Table -> Double

pmf restaurant a (table, ndiners)

| tables restaurant == table = a / denom

| otherwise = fromIntegral ndiners / denom

where

denom = fromIntegral (customers restaurant) + a

We can use τn to denote the measure over tables in a restaurant of size n. The
measure over tables for the n+ 1th arrival can be defined via:
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tau

:: Foldable f

=> Restaurant -> Double -> f Table -> Measure Table

tau restaurant a support =

fromMassFunction (pmf restaurant a) support

and in maths we can express that as τn+1(· |α,Rn,S).

Now for the measure over restaurants of size n+ 1 given a restaurant of size n,
we’ll define it according to the following procedure.

Denote the number of occupied tables in a restaurant Rn by |Rn| and let R∗
n

denote the augmented restaurant obtained by populating a new table inRn with
a ghost, such that |R∗

n| = |Rn| + 1 even though the number of (living) cus-
tomers is the same in each. Let Sn denote the support — the possible states of
the restaurant — of the measure when the n+ 1th customer arrives.

Define the following function that creates a restaurant from a table and existing
restaurant pair:

h({t,Rn} |Rm) =

d(t) |Rm| = Rn + 1

d(t) + 1 otherwise.

Denote updating the number of diners at a table t to l in a restaurant Rn by
Rn ⊢ d(t) → l. We can then define the measure ρn+1 over restaurants Rn+1,
given a restaurant Rn, as:

ρn+1(· |α,Rn) = τn+1(α,R∗
n,Sn) ≫= λt.δRn⊢d(t)→h(t,Rn).

In code, that looks like:

rho :: Restaurant -> Double -> Measure Restaurant

rho restaurant a = do
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let ntables = tables restaurant

support = IMS.insert (ntables + 1) 1 restaurant

virtual = IMS.insert (ntables + 1) 0 restaurant

(idx, diners) <- tau virtual a (IMS.toList support)

let ndiners

| idx == ntables + 1 = diners

| otherwise = diners + 1

return (IMS.insert idx ndiners restaurant)

The CRP measure for a restaurant of size n itself can then finally be defined by
recursively iterating the ‘next restaurant’ measure ρ for n arrivals, each time
conditioning on the restaurant measure corresponding to the previous customer
arrival:

crp :: Int -> Double -> Measure Restaurant

crp epochs a = loop epochs IMS.empty where

loop n restaurant

| n <= 0 = return restaurant

| otherwise = do

newRestaurant <- rho restaurant a

loop (n - 1) newRestaurant

Now, let’s construct measures for three restaurants of size n = 2, n = 5, and
n = 10 and make some queries over them.

First, the measures:

small :: Double -> Measure Restaurant

small a = crp 2 a
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medium :: Double -> Measure Restaurant

medium a = crp 5 a

large :: Double -> Measure Restaurant

large a = crp 10 a

The most intuitive thing to query a CRP for is its expected number of tables
for some number of arrivals n and dispersion parameter α. It is known that a
CRP observed for n arrivals has expected number of tables equal to Ψ(α+ n)−
Ψ(α) for Ψ the digamma function. The expected number of tables for the small,
medium, and large restaurants with α = 1 should thus be 1.5, 2.28, and 2.93

respectively. Note that we can use the existing ‘tables’ function to build our
query:

> integrate (fromIntegral . tables) (small 1)

1.5

> integrate (fromIntegral . tables) (medium 1)

2.283333333333333

> integrate (fromIntegral . tables) (big 1)

2.9289682539682533

To calculate the variances (for which I can’t find a closed-form expression easily,
at least) we can just adapt the respective measures to the reals via their functor
structure and then apply the variance query:

> variance (fmap (fromIntegral . tables) (small 1))

0.25

> variance (fmap (fromIntegral . tables) (medium 1))

0.8197222222222225

> variance (fmap (fromIntegral . tables) (big 1))

1.3792005228017157
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The restaurants become more antisocial as we increase the dispersion parameter
— diners prefer to sit by themselves instead of joining an existing table. Here is
the expected number of tables and variance for the ‘big’ restaurant when using
α = 10 instead:

> expectation (fmap (fromIntegral . tables) (big 10))

7.18771403175428

> variance (fmap (fromIntegral . tables) (big 10))

1.798162757106006

As a sort of sanity check, we can calculate the expected number of customers for
a restaurant of size n. It should be n, naturally:

> integrate (fromIntegral . customers) (big 10)

10.0

Finally, for illustration we can recover the cumulant generating function for the
pushforward measure of a CRP under the number-of-tables query:

> cgf (fmap (fromIntegral . tables) (big 5))

Figure 3.8 displays the CGF over the region t ∈ [−5, 5].

3.8 Summary

Our continuation-basedGirymonad constitutes a small DSL shallowly-embedded
in Haskell. At its core it has just a small number of components. To review, it
consists of:
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Figure 3.8: A plot of the cumulant generating function recovered from the pushforward of

the CRP(10, 5) measure under a number-of-tables query over the region t ∈ [−5, 5].

• The ‘Measure’ type, which simply holds a continuation representing amea-
sure as an abstract integration procedure. We parameterize the measure
type over an abstract type parameter in order to support arbitrary measur-
able spaces, and provide the ‘fromMassFunction’, ‘fromDensityFunction’,
and ‘fromSample’ in order to create ‘Measure’-typed values.

• The functor, applicative, and monad instances for the ‘Measure’ type. Each
foundational typeclass instance immediately grants us a familiar proba-
bilistic tool that we can use to manipulate, examine, or modify measures.
The functor instance lets us create image measures from existing measures
via ‘fmap’, whereas the applicative instance lets us create product mea-
sures that encode independence (and thus perform convolution, etc.). The
monad instance allows us to compose measures together, marginalizing
one into another in standard hierarchical fashion.

• The core evaluation function ‘integrate’ that evaluates a measure by inte-
grating it against a measurable function. More advanced queries such as
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higher-order moments, moment and cumulant generating functions, and
cumulative distribution functions can all be built using this one primitive.

• Various facilities from our host language, Haskell. A parser, compiler,
module system, function support, recursion, external libraries, data struc-
tures, and so on.

A version of the EDSL presented here is available under the MIT license as the
measurable library [Tobin, 2013b].

3.8.1 Computational and Feature Limitations

The Giry monad is a useful and general abstract construction for formalizing
the monadic structure of probability distributions, and as canonical probabilis-
tic objects, measures and integrals become tremendously useful when working
theoretically and proving things rigorously. But any reasonably-faithful imple-
mentation of the Giry monad faces serious problems when it comes to getting
work done in practice.

The crucial problem that one quickly runs into when using the Girymonad is that
measures are a poor way to represent probability distributions from a compu-
tational perspective. Consider the following integral expression that arises from
a monadic bind:

(ν ≫= µ)(f) =

∫
M

{
λm.

∫
M

fdµ(m)

}
dν.

For tractability, assume thatM is discrete and has cardinality |M |. The integral
thus reduces to:

(ν ≫= µ)(f) =
∑
m∈M

dν(m)
∑
n∈M

f(n)dµ(m)(n)︸ ︷︷ ︸
O(|M |)︸ ︷︷ ︸

O(|M |)
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where dµ(m) and dν are the appropriate Radon-Nikodym derivatives. One can
see that the total number of operations involved in the integral is O(|M |2), and
indeed, for p monadic binds the computational complexity involved in evaluat-
ing all the integrals involved is exponential, on the order of |M |p. It was no
coincidence that Section 3.6.3 demonstrated a variance calculation for a χ2(2)

distribution instead of a χ2(10) — even a modest number of monadic binds can
make the running time and space usage blow up to unacceptable levels. We can
avoid using monadic binds by using applicative combinators (for example for
convolution, etc.), but the running time and space usage turn out to be compa-
rable to the monadic case. The complexity of applicative operators is harder to
characterize formally, and we won’t attempt to do that here.

A particular pain point involves integrating ‘continuous’ measures, i.e. those
that are absolutely continuous with respect to Lebesgue measure. In the one-
dimensional case of the reals that we support here, we resort to using quadrature
in order to approximate a Riemann integral. Quadrature can be a comparatively
expensive operation as it is, and the exponential complexity of only a handful of
monadic binds makes this very obvious very quickly. What’s more, quadrature
does not scale well beyond a few dimensions (indeed, the quadrature implemen-
tation used here supports only one dimension), so what we can achieve with it
is limited. To support higher-dimensional spaces we would need a more appro-
priate approximate integration procedure.

An additional problem is that the utility of the measure representation is limited
from a practical perspective. A measure obviously provides functionality for
integration, but many desirable features of day-to-day work are poorly supported
bymeasures — such as optimization, sampling, and visualization. Since querying
a measure involves integrating it, we’re also restricted to queries that return a
real number, which seems unnecessarily limiting. So while we can encode the
Monty Hall problem from Chapter 2 just as easily using measures as we could
using the discrete distribution type, we can’t query it quite as easily. At least not
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without first specifying some mapping between booleans and reals that we can
use for integration.

When taking a high-level view, the problems with the measure representation
should not be surprising: approximate integration procedures like MCMC exist
precisely because exact integration is difficult, so a representation of probabil-
ity distributions based on integration does not turn out not to be a particularly
fruitful way to get work done. The most useful contribution of this work is the
probabilistic interpretation that we have developed around the structure of the
Giry monad, but a simple conclusion for practical work is: relegate the measures
to measure theory, where they seem to belong.

3.8.2 Comparison with Other Work

Perhaps the greatest strength of the Giry monad is that it can represent any prob-
ability distribution and be used to derive concise probabilistic semantics around
structures like functor, applicative, and monad by way of category and measure
theory. We can carry these intuitions to other probability types that can be put
in correspondence with the Giry monad, such as the toy language discussed in
Chapter 2, or the types we will discuss in Chapter 4. This idea of using the Giry
monad to derive denotational semantics of probabilistic programming languages
was also noted by Ścibior et al. [2017], though the authors did not extrapolate on
interpretations of functorial nor applicative structure.

Since Giry [1981] and especially in recent years there seems to have been some
activity in the category theory literature around the categorical structure of var-
ious concepts in probability, measure, and integration theory. But these (nat-
urally) seem to have focused on establishing rigorous categorical formalisms
rather than extracting satisfying probabilistic interpretations. Our focus here
is obviously the latter.
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Two notable, recent works here are Rodrigues [2009] —which outlined a lengthy,
formal roadmap for ‘categorifying’ measure theory — and Sturtz [2014], who rig-
orously discussed structural properties of Meas as well as alternate theoretical
constructions for the Giry monad. This author suspects that the notion of image
or pushforward measure as a functor encoding of an underlying probability dis-
tribution is common (or even plainly obvious) to category theorists, but it does
not seem to have been well-disseminated outside of the category theory litera-
ture. Sturtz [2014] discussed the monoidal structure of Meas, but did not note
the monoidal structure of the Giry monad that connects it to applicative functors
and product measure.

Due to its inherent computational complexity and the limited practical use of
many integration-based queries, direct encodings of the Giry monad are uncom-
mon in practice. Borgström et al. [2011] investigated using measure-theoretic
constructs to define semantics in probabilistic programs, but did not actually
implement a language in which measures were first-class citizens. Recent devel-
opment versions of Hakaru [Hakaru, 2014] do make some use of some so-called
measure constructs in their implementation, but their purpose in the language’s
internals is unclear, and the language is clearly not based around direct inte-
gration semantics. Most shallowly-embedded probabilistic programming frame-
works opt for some other fundamental basis that can offer more practical utility.
Erwig and Kollmansberger [2006], Kiselyov and Shan [2008], and Sato [2009]
each used an explicit representation of discrete distributions in line with the em-
bedded language described in Chapter 2, which can be useful, but limits the dis-
tributions under consideration to discrete supports only. Samplng functions are a
more practically useful and flexible basis and were discussed by both Ramsey and
Pfeffer [2002] and Park et al. [2008], and other embeddings tend to make use of a
collection of abstract probability distributions that can be associated with some
particular semantics (or collection of semantics) such as sampling functions. The
latter strategy typically involves using a deeper embedding, and we’ll discuss the
merits of that and the sampling function basis in Chapter 4.
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The most important comparison to the implementation work developed in Sec-
tion 3.4 is that of Ramsey and Pfeffer [2002], who presented an ‘expectation
monad’ that is structurally equivalent to the probability monad presented here,
and thus also corresponds to the Giry monad in the sense that it represents prob-
ability distributions by way of integration. It is worth making a special compar-
ison to their work. The primary construct they deal with is an abstract represen-
tation of the Giry monad in the form of a typeclass, defined as follows:

class Monad m => ExpMonad m where

expectation :: (a -> Double) -> m a -> Double

An appendix also defines a concrete instance of ‘ExpMonad’:

newtype Exp a = Exp ((a -> Double) -> Double)

instance Monad Exp where

return x = Exp (\h -> h x)

Exp d >>= k = Exp (\h ->

let apply (Exp f) arg = f arg

g x = apply (k x) h

in d g)

instance ExpMonad Exp where

expectation h (Exp d) = h d

It is easy to see the similarity to the implementation of Section 3.4, though the
primarily-discussed abstract ‘ExpMonad’ class is sufficiently different to the pre-
sent implementation that it was not obvious the two both represented the Giry
monad until some point after the ideas here had first materialized. But as pointed
out in 3.4, the Giry monad is the continuation monad restricted to the reals, and
thus it is in hindsight no surprise that both the present implementation and the
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expectation monad of Ramsey and Pfeffer [2002] are structurally equivalent to
the continuation monad of Wadler [1994].

We explicitly claim differentiation from Ramsey and Pfeffer [2002]’s work on
the expectation monad on two dimensions. On the theoretical side, aside from
pointing out the connection between the Giry and continuation monads, we also
develop several probabilistic interpretations not discussed by Ramsey and Pfef-
fer [2002], namely the functor-provided pushforward operation via ‘fmap’ and
the applicative-provided notion of product measure, independence, and convolu-
tion (indeed, applicative functors were not well-knownwhen Ramsey and Pfeffer
[2002] published their work). On the implementation side, we develop a number
of more exotic queries that can be expressed in an integration-based language
and that were not discussed by Ramsey and Pfeffer [2002], such as higher-order
moments, cumulant generating functions, and CDFs, and demonstrate that these
can be used on measures defined over varied supports.

There is an interesting developing collection of theoretical work that seems to
connect the Giry monad to the so-called codensity monad of a functor, which has
an almost equivalent implementation to the continuation monad [Kmett, 2008b].
We do not investigate this topic any further here, but refer to Leinster [2013] and
Avery [2016] for some rigorous categorical work in the area.

3.9 Conclusion

This chapter has demonstrated that the Giry monad is sufficient for representing
arbitrary probability distributions in an embedded language. We provided prob-
abilistic interpretations for its functorial, applicative, and monadic structure, and
then implemented a small, shallowly-embedded DSL for creating, transforming,
and querying measures. The shallowly-embedded DSL is seen to be equivalent
to that constructed from a restricted continuation monad.
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While the Giry monad is sufficient for representation, however, it is not particu-
larly useful in practice. There are three crucial problems with it:

• Querying measures is prohibitively expensive.

• We are limited to performing integration-based queries.

• We can’t examine the structure of a measure expression.

In the next chapter we’ll resolve these problems by moving from the Giry monad
to two other probability monads, including one that can reify probabilistic mod-
els in a structure-preserving form.
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Chapter 4

Representing Structured
Probabilistic Models

The limits of my language means
the limits of my world.

Wittgenstein

4.1 Abstract and Contributions

This chapter extends the work we did on representing probability distributions
via the Giry monad in Chapter 3. Instead of representing distributions as mea-
sures, we’ll now capture probability distributions in a general and structure-

preserving way, distinguishing them as structured probabilistic models that are
amenable to arbitrary interpretation.

To prepare for the sequel, the first part of the chapter details the well-known
sampling monad, which, unlike the Giry monad, is computationally efficient and
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practically useful. Like the Girymonad, though, themarginalizing interpretation
of the sampling monad is lossy in that evaluating a monadic bind discards infor-
mation about a model’s internal structure, which we generally require access to
in order to do some useful forms of approximate inference. We demonstrate how
uninterpreted abstract syntax captures the structure of a program, and note that
a deep embedding of our language is required in order to get access to it.

We then introduce the concept of algebraic freeness and discuss the free monad,
a monad for which the bind operator is structure-preserving. The free monad
is used to embed a monadic probabilistic language capable of denoting models
that are amenable to inference. Exploiting the free structure also means that the
marginalizing interpretations captured by the Giry and sampling monads can
trivially be grafted onto the deeply-embedded language as interpreters.

We can also exploit freeness and its algebraic dual, cofreeness, when it comes
to applicative functors and comonads. Free applicative functors let us encode
conditional independence via product measure, while cofree comonads let us
perturb a model’s internal parameters in order to do (for example) single-site
Metropolis-Hastings.

The primary contributions of this chapter are:

• A novel technique for embedding a statically-typed probabilistic pro-
gramming language in a purely functional language. We use the free

monad of a probabilistic base functor in order to define our embedded lan-
guage, giving us the same syntax as the language based on the Giry or
sampling monads, but with considerably more flexibility when it comes to
interpretation.

• A novel characterization of execution traces as cofree comonads. We
demonstrate that probabilistic programs encoded using the free monad
have a dual representation as execution traces under the cofree comonad,
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which allows us to ‘move about’ and perturb a model’s internal parame-
ters. We then implement a novel comonadic Markov Chain Monte Carlo
algorithm that makes use of this characterization.

• A novel technique for statically encoding conditional independence be-
tween terms in the embedded language. Following from the applicative/prod-
uctmeasure structure derived in Chapter 3, we use the free applicative func-
tor in order to capture applicative expressions in a structure-preserving
way.

4.2 A Sampling Function-Based Representation

The Giry monad-based DSL presented in the previous chapter is a ‘canonical’
probability monad in a sense, but it is not the only probability monad. Ramsey
and Pfeffer [2002] described a ‘sampling monad’ — a probability monad based
on sampling functions — in addition to their ‘expectation monad’ encoding of the
Giry monad. A sampling function is a function that takes as input a source of
randomness and returns as output a sampled value from the support of some
target probability distribution. Ignoring implementation details around pseudo-
random number generators, they can safely be thought of as random variables.

Random variables characterize probability distributions uniquely in the same
way that measures or density functions do, and this claim extends to sampling
functions [Ramsey and Pfeffer, 2002]. Park et al. [2008] gave a seminal treat-
ment on the use of sampling functions as a basis for monadic probabilistic pro-
gramming languages; they developed a standalone language called λ0 based on
sampling functions.

A sampling function-based embedded language is more practically useful than
one based on the Giry monad. We can generate observations from the predictive
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distribution described by a model by ‘forward-sampling’ from it, and then ap-
proximate a posterior distribution by any number of ‘backward-sampling’ infer-
ence algorithms, such as rejection or importance sampling or MCMC. One can
get surprisingly far with a shallowly-embedded sampling function-based lan-
guage when it comes to approximate inference. But there are certain inference
algorithms for which a shallow embedding does not suffice, and we need some
more structure in order to proceed.

In this section we’ll run through an implementation of a probability monad based
on sampling functions, in order to set the stage for the deeply-embedded proba-
bilistic language we’ll develop in the sequel. The probabilistic semantics encoded
by the Giry monad have precise analogues here: to implement them, we’ll create
a new type to represent probability distributions, and then use the now-familiar
technique of wrapping some monadic structure around it.

4.2.1 Implementation and Computational Complexity

There are two key concepts that we’ll use to implement a ‘sampling monad’.
The first is the same kind of parametric polymorphism used to characterize the
support type of the distributions we’ve seen thus far, and the second is a pseudo-
random number generator (PRNG). As Haskell is a purely functional language,
we can’t trivially pluck random numbers out of thin air like we might be used
to in a language like R or Python. Instead, we need to pass the state of a PRNG
along with the state of our computation, and use that as an explicit source of
randomness whenever we need to generate random numbers.

There are a number of good libraries for randomness in Haskell’s library ecosys-
tem. One of the best is themwc-random library [O’Sullivan, 2009], which imple-
ments performant and high-quality random number generation via the multiply-
with-carry algorithm ofMarsaglia and Zaman [1991]. mwc-random uses amonad
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to handle passing the state of the PRNG, but we can implement a simple proba-
bility monad by adding another layer with the familiar semantics on top of that.

Given the underlying functionality of mwc-random, constructing a probability
monad is almost trivial. First, the probability distribution type we’ll use as a
basis:

data Prob m a = Prob { sample :: Gen (PrimState m) -> m a }

Our probability distribution type is called ‘Prob’, and it is a very simple wrapper
around a particular function type. The ‘Prob m a’ type wraps a function called
‘sample’ that takes a PRNG (the ‘Gen (PrimState m)’ term) and returns a monadic
value of type ‘m a’. The restriction here is that ‘m’ must be a particular kind of
primitive monad, but we don’t need to examine this in detail here.¹

The rest of the machinery falls out naturally:

instance Monad m => Functor (Prob m) where

fmap h (Prob f) = Prob (\x ->

fmap h (f x))

instance Monad m => Applicative (Prob m) where

pure = return

(<*>) = ap

instance Monad m => Monad (Prob m) where

return x = Prob (\_ -> return x)

m >>= h = Prob (\g -> do

z <- sample m g

sample (h z) g)

¹To be precise, the monad ‘m’ here must be a member of the ‘PrimMonad’ typeclass, which
describes IO-like monads that make use of GHC’s low-level state handling features. This restric-
tion doesn’t apply to the type or instance definitions - just values that we’ll create later.
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The semantics derived from the Giry monad are unchanged: the functor instance
allows us to create pushforwards by transforming the support of a distribution,
the applicative instance encodes independence, and the monad instance allows
us to compose distributions together by marginalizing one into the other.

We can verify the functor and monad laws as follows. First, for functor we have:

fmap id (Prob f)

= Prob (\x -> fmap id (f x))

= Prob f

fmap (g . h) (Prob f)

= Prob (\x -> fmap (g . h) (f x))

= Prob (\x -> (g . h . f) x)

= fmap g (Prob (\x -> (h . f) x))

= fmap g (fmap h (Prob (\x -> f x)))

= (fmap g . fmap h) (Prob f)

so that identity and composition are preserved. Formonad, left and right-identity
can be verified via:

return x >>= f

= Prob (\g -> do

z <- sample (Prob (\_ -> return x)) g

sample (f z) g)

= Prob (\g -> do

z <- return x

sample (f z) g)

= Prob (\g -> sample (f x) g)
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= Prob (sample (f x))

= f x

m >>= return

= Prob (\g -> do

z <- sample m g

sample (return z) g)

= Prob (\g -> do

z <- sample m g

sample (Prob (\_ -> return z) g))

= Prob (\g -> do

z <- sample m g

return z)

= Prob (sample m)

= m

Associativity follows via:

(m >>= f) >>= h

= Prob (\g -> do

z <- sample m g

sample (f z) g) >>= h

= Prob (\g -> do
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z <- sample (Prob \g’ -> do

z’ <- sample m g’

sample (f z) g’) g

sample (h z) g)

= Prob (\g -> do

z’ <- sample m g

z <- sample (f z’) g

sample (h z) g)

m >>= \x -> (f x >>= h)

= m >>= \x -> Prob (\g -> do

z <- sample (f x) g

sample (h z) g)

= Prob (\g -> do

z <- sample m g

sample ((\x -> Prob (\g’ -> do

z’ <- sample (f x) g’

sample (h z’) g’)) z) g)

= Prob (\g -> do

z <- sample m g

sample (Prob (\g’ -> do

z’ <- sample (f z) g’

sample (h z’) g’)) g)

= Prob (\g -> do

z <- sample m g

z’ <- sample (f z) g

sample (h z’) g)

115



so that (m≫= f) ≫= h = m≫= (λx.fx≫= h), as required.

That is more or less it. The sampling function implementation is simple to imple-
ment and simple to extend. Individual sampling functions can be created from
others by familiar techniques such as the Box-Muller transformation and friends;
Park et al. [2008] denote a number of distributions by sampling functions in this
fashion. The mwc-random library contains a plethora of sampling functions out
of the gate, and in many cases we can exploit the monadic structure we have in
order to define others. A log-normal distribution can be defined by pushing an
exponential function onto a sampling function for the Gaussian distribution:

logNormal :: PrimMonad m => Double -> Double -> Prob m Double

logNormal m sd = fmap exp (gaussian m sd)

Similarly an inverse-gamma distribution can be characterized by fmapping a re-
ciprocal function over an existing sampling function for the gamma distribution:

inverseGamma :: PrimMonad m => Double -> Double -> Prob m Double

inverseGamma a b = fmap recip (gamma a b)

We can use the applicative or monadic structure if we want to exploit gamma
sampling functions to characterize the beta distribution:

beta :: PrimMonad m => Double -> Double -> Prob m Double

beta a b = do

u <- gamma a 1

w <- gamma b 1

return (u / (u + w))

And so on.
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Unlike the measure representation, the sampling function representation is com-
putationally efficient. Compare the monad instance for this ‘sampling monad’
with the monad instance for the Giry monad:

-- Giry

instance Monad Measure where

return x = Measure (\f -> f x)

rho >>= g = Measure (\f ->

integrate (\m ->

integrate f (g m))

rho)

-- sampling

instance Monad m => Monad (Prob m) where

return x = Prob (const (return x))

m >>= h = Prob (\g -> do

z <- sample m g

sample (h z) g)

Themarginalizing semantics of the continuation-based Giry monad are based on
integration, so as mentioned in Chapter 3 for any monadic bind we need to per-
form an expensive iterated integral. Notably, the inner integral in general doesn’t
have a constant value, so the complexity of additional binds is multiplicative, and
thus exponential in the number of monadic binds.

The marginalizing semantics of the sampling monad, however, involve simply
drawing a sample. We sample first from some distribution and then use that
value to sample from another distribution depending on it. The complexity in
this case is additive, and thus linear in the number of monadic binds.
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4.2.2 A Sampling-Based Embedded Language

The sampling monad implements a shallowly-embedded DSL in the same spirit
as the Giry monad, and indeed the syntax around its functorial, applicative, and
monadic structure are identical. An MIT-licensed version of this EDSL is avail-
able as the mwc-probability library [Tobin, 2014].

Zinkov [2012] enumerated a number of popular models used in applied statis-
tics and formulated them using JAGS. It is instructive to compare some of those
implementations to the programs that can be expressed by using monadic struc-
ture; the resulting code is typically shorter and clearer, with the added benefit of
being composable and type-safe.

We can implement a simple Bayesian linear regression model like so:

regression obs = do

a <- gaussian 0 10

b <- gaussian 0 10

v <- uniformR (0, 100)

let model x = gaussian (a + b * x) (sqrt v)

for obs model

The order of the monadic binds matters, in contrast to a language like BUGS/-
JAGS, where the corresponding linear regression model can be expressed as fol-
lows (following the example of Zinkov [2012]):

model {

for (i in 1:N){

y[i] ~ dnorm(y.hat[i], tau)

y.hat[i] <- a + b * x[i]

}

a ~ dnorm(0, 0.01)
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b ~ dnorm(0, 0.01)

tau <- pow(sigma, -2)

sigma ~ dunif(0, 100)

}

In the BUGS example we can use parameters like ‘tau’, ‘a’, and ‘b’ before we actu-
ally declare them, whereas in a monadic context we have to declare things from
the top-down as we encounter them (in technical parlance, the monadic bind-
ings are not mutually recursive). Also note the technique we use in the monadic
code; we define ‘model’ to be a function that models the output for any given
covariate input, and then effectfully map that function over the inputs using the
‘for’ function.

It’s worth highlighting again the difference between the JAGS denotation of the
model and what can be expressed by using a monadic structure. Models assem-
bled bymonadic binds are composable. In the regression example we can split the
prior and likelihood into separate parameter and data models, and then combine
them using a bind:

prior = do

a <- gaussian 0 10

b <- gaussian 0 10

v <- uniformR (0, 100)

return (a, b, v)

likelihood obs (a, b, v) = do

let model x = gaussian (a + b * x) (sqrt v)

for obs model

predictive obs = prior >>= likelihood obs

This style of (type safe) composition and reuse is not possible in a language like
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BUGS, JAGS, or Stan. In the JAGS example above, the ‘model’ block cannot be
used as an input to other models — it is a block of code that must stand on its
own. It’s not just useful for the abstract purpose of being modular; it can also
be useful if one wishes to sample from the prior, rather than from the predictive
distribution.

We can adapt the simple linear regression model to use arbitrary other basis
functions. Here is a sinusoidal regression model, for example:

sinusoidal obs = do

a <- gaussian 0 10

b <- gaussian 0 10

v <- uniformR (0, 100)

let model x = gaussian (a * cos x + b * sin x) (sqrt v)

for obs model

Arbitrary link functions can also be supported; here is an implementation of
Bayesian logistic regression:

logistic x = 1 / (1 + exp (negate x))

logisticRegression obs = do

a <- gaussian 0 10

b <- gaussian 0 10

let prob x = logistic (a + b * x)

for obs (bernoulli . prob)

Recursive structures, like those found in autoregressive models, are expressed
particularly naturally in a functional language. A purely functional language
contains no primitive looping statements, so iteration must be done recursively.
Consider the following ARIMA(1, 1, 1) model implemented in BUGS (again from
Zinkov [2012]):
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model {

y[1] ~ dnorm(0,1e-5)

eps[1] <- 0

for (i in 2:T) {

y[i] ~ dnorm(mu[i],tau)

mu[i] <- w0 + w1*y[i-1] + x[i] + eps[i-1]

eps[i] <- y[i] - mu[i]

}

w0 ~ dnorm(0, .0001)

w1 ~ dnorm(0, .0001)

tau <- pow(sigma, -2)

sigma ~ dunif(0, 100)

}

We can implement this in our embedded language by using several monadic com-
binators from our host, Haskell. The model is as follows:

prior = do

[w0, w1, y0] <- replicateM 3 (gaussian 0 1)

s <- uniform

return (w0, w1, s, y0)

likelihood obs (w0, w1, s, y0) = unfoldrM process (y0, 0, obs) where

process (_, _, []) = return Nothing

process (y, e, xs) = do

let mu = w0 + w1 * y + head xs + e

yn <- gaussian mu s

return (Just (yn, (yn, yn - mu, tail xs)))

model obs = prior >>= likelihood obs
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In particular the implementation uses the ‘unfoldrM’ combinator representing a
right-unfold — a typical manner of producing a recursive structure in Haskell.
‘unfoldrM’ recursively calls the ‘process’ function which produces another iter-
ation of the model if there are more inputs to process and terminates otherwise.
We’ve also used the ‘replicateM’ function in the prior to call the standard normal
function three times.

4.3 Preserving Model Structure

4.3.1 Motivation

Each of the probability monads we’ve looked at has an easily-interpretable mar-
ginalizing semantics that ‘collapses’ the graph of distributions implicitly described
by a given program. Whenever we’ve composed two distributions together via
the bind operator ≫=, we’ve performed some operation that propagates the un-
certainty from the distribution left of the bind into the one on the right: in the
beta-binomial distribution expressed by beta(α, β) ≫= binomial(n, ·), for exam-
ple, the bind operator propagates the uncertainty captured by the beta distribu-
tion into the p parameter accepted by the binomial distribution. In the case of
the Giry monad this marginalization occurs by direct integration, while for the
sampling monad we simply sample and propagate the result directly (yielding a
much more computationally efficient method of propagating uncertainty).

These marginalizing semantics are both by definition lossy in that, by marginal-
izing something, the monadic bind operator throws away information about the
structure of the things it’s binding together. It’s easy to see that the overall struc-
ture of programs encoded by the Giry or sampling monads is identical, but what
we can’t do is examine this structure, as evaluating a term via ‘integrate’ or ‘sam-
ple’ collapses the programs to a single point (an expectation or sample over the
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predictive distribution, respectively).

The structure is evident to us in the program that we write, but it’s not amenable
to analysis or manipulation. It is ‘write-only’, if you will. This is problematic for
implementing arguably the most important and compelling feature of Bayesian
statistics, inference. Consider Bayes’ theorem set in the following form:

p(causes | effects) ∝ p(effects | causes)p(causes) (4.1)

If we have a model of our assumptions about the world p(causes) (encoded as
a parameter model, or prior) and a model of the world conditional on those as-
sumptions p(effects | causes) (the data model, or likelihood), then we can cal-
culate the posterior distribution p(causes | effects) that models our assumptions
about the world, given what we have observed from it.² The posterior is like
our data model, but with the conditioning flipped around; extracting a posterior
from a conditioned distribution can be thought of as inverting it. Equation 4.1
expresses the inversion at the distribution level, but given a structure for our
model, we can recover a structure for the inverse model as well. The inversion
is particularly easy to see if we visualize a distribution by its graph structure
— we merely switch what nodes are conditioned on (see Figure 4.1). When do-
ing inference we’re typically interested in evaluating integrals over the poste-
rior distribution, which in practice must usually be approximated by some form
of Monte Carlo, and typically MCMC. We need access to the structure of the
underlying conditional distribution in order to implement many popular ap-
proximate inference algorithms. In particular, for MCMC we typically need to
propose transitions over parameters and also know how to calculate the proba-
bility of that proposal. It is difficult to do this without being able to analyze the
internal structure of a distribution.

Defining, manipulating, and interpreting structured Bayesianmodels is the essence
of probabilistic programming. A user of a probabilistic programming language

²Of course, we’re typically only interested in calculating something proportional to the pos-
terior, but we can usually ignore this detail.
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θ ν x ϕ

θ ν x ϕ

Figure 4.1: Comparing the structures of a data model/likelihood with a posterior. The like-

lihood is visualized at top; we condition on the parameters θ, ϕ, and ν and propagate in-

formation forwards into the unobserved data node x via the graph structure. The posterior

is visualized below and has an inverted conditional structure relative to the likelihood; here

we condition on the data x and propagate information backwards through the graph to the

parameters.

writes a program that defines a structured model, and then the language supplies
specialized interpreters that evaluate, compile, or otherwise analyze that struc-
ture in order to extract useful information from the model, whether that be by
way of samples, probabilities, integrals, and so on. The model and its structural
inverse lend itself to natural ‘forward’ and ‘backward’ interpretations of the pro-
gram, and the dichotomy between the two is one of the most important concepts
in probabilistic programming. Typically, probabilistic programming languages
use a sampling interpretation for both directions; interpreting amodel ‘forwards’
samples from the (prior) predictive distribution, while interpreting ‘backwards’
yields an approximate sample or samples from the posterior distribution. An ef-
ficient form of this backwards sampling interpretation over the posterior is the
most difficult and important open problem in probabilistic programming, and
Bayesian statistics more broadly [Mansinghka, 2009, Goodman and Stuhlmüller,
2014].
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4.3.2 Towards A Deep Embedding

So: preserving the structure of a model is desirable. Our models are implemented
as programs, and preserving structure will make the internals of the program
open to examination and manipulation. This is necessary if we want to imple-
ment some important algorithms for performing approximate inference. Recall
that both the measure and sampling-based DSLs have been shallow embeddings,
in that the terms of the languages are defined by their respective semantics (inte-
gration and sampling, respectively). Now we’d like to move to a deep embedding

in which the language is described in terms of its own abstract syntax.

Abstract syntax is the raw, uninterpreted data that describes a program. Consider
the following example of an expression language for ring-operator arithmetic on
integers:

data Arithmetic =

Lit Int

| Add Arithmetic Arithmetic

| Sub Arithmetic Arithmetic

| Mul Arithmetic Arithmetic

deriving (Eq, Show)

It is an expanded version of the original example we saw in Chapter 2. This
data type defines a tiny language consisting of four terms: ‘Lit’, ‘Add’, ‘Sub’, and
‘Mul’. ‘Lit’ corresponds to a literal value and carries with it an integer, while the
other three correspond to their respective arithmetic operators ‘+’, ‘−’, and ‘∗’.
Each of these carries two other values of type ‘Arithmetic’ with it such that the
‘Arithmetic’ type is defined recursively. Recall from Chapter 2 that the recur-
sive definition reads exactly like the equivalent Backus-Naur Form for denoting
context-free grammars:

125



<arithmetic> ::= lit <int>

| add <arithmetic> <arithmetic>

| sub <arithmetic> <arithmetic>

| mul <arithmetic> <arithmetic>

Values of the ‘Arithmetic’ type form a binary-branching tree — indeed, such ex-
pressions are called abstract syntax trees or ASTs. We can write an value of the
‘Arithmetic’ type in GHCi:

> Sub (Mul (Lit 3) (Lit 5)) (Add (Lit 1) (Lit 4))

Sub (Mul (Lit 3) (Lit 5)) (Add (Lit 1) (Lit 4))

Notice that nothing ‘happens’ when the expression is entered — we just get
handed back the raw data that we passed in. The abstract data do not carry any
meaning until an interpreter assigns one; until then, they’re just data. We can
define a simple recursive interpreter to evaluate expressions of the ‘Arithmetic’
type in the standard way:

eval :: Arithmetic -> Int

eval (Lit j) = j

eval (Add e0 e1) = eval e0 + eval e1

eval (Sub e0 e1) = eval e0 - eval e1

eval (Mul e0 e1) = eval e0 * eval e1

And we can then use it to interpret our previous expression:

> eval (Sub (Mul (Lit 3) (Lit 5)) (Add (Lit 1) (Lit 4)))

10

The ‘eval’ function does exactly what we expect, recursively evaluating the ex-
pression until we’re left with a final, single integer value. Note that by evaluating
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an expression, we necessarily lose the structure attached to it — the same issue
faced by the probability monads implemented thus far. But with the structure of
the expression accessible, we can examine it or apply arbitrary transformations
to it. Consider the following function that converts all instances of multiplication
to addition, for example:

mulToAdd :: Arithmetic -> Arithmetic

mulToAdd (Add e0 e1) = Add (mulToAdd e0) (mulToAdd e1)

mulToAdd (Sub e0 e1) = Sub (mulToAdd e0) (mulToAdd e1)

mulToAdd (Mul e0 e1) = Add (mulToAdd e0) (mulToAdd e1)

mulToAdd e = e

This interpreter transforms a program into another program, while preserving
structure. Applying it to an expression yields the predictable result:

> mulToAdd (Sub (Mul (Lit 3) (Lit 5)) (Add (Lit 1) (Lit 4)))

Sub (Add (Lit 3) (Lit 5)) (Add (Lit 1) (Lit 4))

So we’d like to define a suitable abstract syntax for our embedded probabilistic
language in the same spirit as we’ve done for this toy language for arithmetic.
The catch is that we’d like to write our model in much the sameway as we did be-
fore, reusing primitives like do-notation, function application, variable binding,
and so on from the host language. But instead of marginalizing to some element
describing the predictive distribution as did the Giry and sampling monads, we
want our model definition to generate abstract syntax that we can later interpret.

4.3.3 Algebraic Freeness and the Free Monad

This section presents an elegant way to capture abstract syntax from a monadic
program, using the properties of algebraic freeness. Freeness corresponds to a
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kind of genericness or minimalness in that a free ‘foo’ is a sort of template ‘foo’;
a foo that obeys the minimum possible laws required to be a foo, and nothing
more [Piponi, 2014].

As an example, consider a monoid over a set. A monoid is an algebraic structure
that is characterized by the following properties:

• A set S.

• An associative binary operator+ over S such that for all s0, s1 in S, s0+s1
is also in S.

• A unique identity element 0 in S such that for any s in S, s+0 = 0+s = s.

Two simple examples of monoids are the integers under addition and the integers
undermultiplication. In the former case the identity element is 0, and in the latter
it is 1. But neither of these are free monoids; note that they each obey at least
one other property — commutativity — that is not included in their definition.

The free monoid happens to be the set of finite sequences of elements from some
other set A, where + concatenates sequences together and the identity element
is the empty sequence {}. Concatenation is associative (as required) but not
commutative, satisfying exactly the minimal properties required to be a monoid,
but no more. In Haskell the free monoid can be represented by the list type ‘[a]’
of lists containing values of type ‘a’.

Free constructions are structure-preserving in a sense. Take the monoid of the
integers under addition, for example, where evaluating the expression 3+1 yields
4. Working backwards from 4, we have no sense of what the initial structure
of the expression was — it could have been 1 + 1 + 1 + 1, 1 + 2 + 1, or any
other number of possible expressions. On the other hand, concatenating the
sequences {1, 2} and {3, 4} yields {1, 2, 3, 4}. When working backwards from
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the expression {1, 2, 3, 4} we may not know exactly what elements were used
to create the result — possibly {1} + {2} + {3, 4}, {1, 2, 3} + {4}, etc. But we
do have some information as to the structure of the initial expression — namely,
the elements of all non-empty sequences used to construct it, where the internal
ordering of elements has also been preserved. If we did not have precisely this
structure, then we could demonstrate that the free monoid failed to characterize
a monoid in the required ‘minimal’ sense.³

A free monad, analogously, is a structure-preserving monad: evaluating a free
monad does not destroy the information about what components were used to
create it. The free monad happens to be the set of finite trees containing elements
from a setA, rather than a sequence [Piponi, 2014]. This makes sense when con-
sidering the structure of a monadic expression: the result of any given monadic
bind can be analyzed and a further course of action taken based on it, yielding
potential branching behaviour that is not characteristic of the free monoid, for
example. But just as the free monoid preserves information about the elements
of nonempty sequences used in monoidal expressions, the free monad preserves
information about the elements contained in any nonempty trees used to pro-
duce monadic expressions.

It is illustrative to define freeness formally, starting with the concept of adjoint
functors. Two functors F : C → D andG : D → C are said to be adjoint if there
exists a natural transformation:

η : 1C → G ◦ F

that has the so-called universal mapping property that, for any X ∈ C , Y ∈ D,
and f : X → G(Y ), there exists a unique g : F (X) → Y such that

f = G(g) ◦ η. (4.2)

³Another way to say this is that the free monoid satisfies the monoid laws independent of the
set used to generate it.
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The functor F is then called the left-adjoint and G is called the right-adjoint,
written F ⊣ G.

A forgetful functor, often denoted U , is a functor from one category to another,
such that the target category is a reduced version of the source in which some
structure has been dropped (or ‘forgotten’). A free functor is then left-adjoint to
a forgetful functor, and a free object is an object created by a free functor. One
can thus see why a free object isminimal in the sense of structure; a free functor
takes a generic template object and endows it with just enough structure to be a
member of a requisite category.

Looking at the free monoid example formally: if we have a forgetful functor
U : Mon → Set and free functor F : Set → Mon such that F ⊣ U , then
for X an object of Set we have that the free monoid is an object F (X) in Mon.
Operationally, F creates a monoid over finite sequences of elements of X by
endowing X with concatenation and identity, creating the monoid (X,+, {}).
One can demonstrate that F is the functor that satisfies the universal mapping
property of Equation 4.2 (see Awodey [2010] for a proof, for example).

Now, letU : Monad → F be a forgetful functor (G,µ, η) 7→ G from the category
of monads to the category of functors. It takes a monad (or monad morphism),
to the underlying functor (or natural transformation), discarding the monadic
structure encoded via the natural transformations µ and η. A free monad is an
object in Monad constructed by applying Free : F → Mon to a functor in F .

In code: for a functor ‘f’, the freemonad ‘Free f’ can be given an explicit definition
in Haskell:

data Free f a =

Free (f (Free f))

| Pure a

It is a sum type that encodes a simple recursive structure that can terminate,
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regardless of the characteristics of the functor ‘f’ that parameterizes it. This cor-
responds neatly to the structure of an abstract syntax tree: a program encoded
via a free monad either continues evaluation for another step under the ‘Free f’
branch (and then via any branching structure defined in ‘f’), or it terminates with
result ‘a’ under the ‘Pure’ branch. ‘Free f’ is trivially a functor so long as ‘f’ is
also a functor (the specific ‘f’ used is often called a base functor):

instance Functor f => Functor (Free f) where

fmap f (Pure a) = Pure (f a)

fmap f (Free g) = Free (fmap (fmap f) g)

By definition ‘Free f’ is also a monad (and thus an applicative functor):

instance Functor f => Monad (Free f) where

return = Pure

Free f >>= g = Free (fmap (>>= g) f)

Pure a >>= f = f a

This is precisely the minimal structure required to make a functor ‘f’ into a
monad. And since the free monad is a kind of ‘template’ monad, we can use it to
do all of our usual monadic, functorial, and applicative tricks — it automatically
satisfies the functor and monad (and thus applicative) laws [Swierstra, 2008].

The free monad is well-supported in Haskell via the free library [Kmett, 2008a],
which contains both the free monad implementation above and also an asymp-
totically more efficient Church encoding of the free monad that we won’t discuss
here. Additionally, it provides a number of useful functions for working with
free monads. One particularly useful function is called ‘liftF’, defined as follows:

liftF :: Functor f => f a -> Free f a

liftF f = Free (fmap Pure f)
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The free library also defines the following function, ‘iterM’:

iterM :: (Monad m, Functor f) => (f (m a) -> m a) -> Free f a -> m a

iterM _ (Pure x) = return x

iterM phi (Free f) = phi (fmap (iterM phi) f)

We’ll make use of both of these in the next section. In particular, ‘iterM’ is a
kind of recursion scheme: a structured way of traversing, producing, or consum-
ing a recursive structure. Recursion schemes are elegant and useful patterns for
expressing computation, but a discussion of them is beyond the scope of this dis-
sertation: see Meijer et al. [1991] for the seminal reference, or Tobin [2015] for a
brief and informal overview.

4.4 A Concrete Deep Embedding

Previously we defined functions ‘beta’, ‘bernoulli’, ‘gaussian’, etc. to represent
terms in each of our shallowly-embedded DSLs. In this section we’ll define these
distributions as different constructors of a sum type that will constitute the base
functor for the free monad.

To provide theoretical justification for this idea, recall the category of measur-
able spaces Meas. The Giry monad (P , µ, η) is defined around the endofunctor
P that takes a measurable space M ∈ Meas to the space of probability mea-
sures P(M) ∈ Meas on M . To keep the probabilistic semantics abstract, de-
fine a category of abstract probability distributions Prob such that there exists
a one-to-one correspondence between every probability measure in P(M), for
any M ∈ Meas, and every abstract probability distribution in Prob (these ab-
stract distributions can just be represented by unique names). This can be done
by defining a functor P∗ : Meas → Prob via the following rule: if M ∈ Meas
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is a probability measure, then let P∗(M) be a corresponding abstract probabil-
ity distribution; if it is some other measurable space, let P∗(M) be the abstract
probability distribution corresponding to P(M) (and note that the definition of
morphisms follows in kind).

Now, given the forgetful functor U : Monad → F , the left-adjoint free functor
F : F → Monad can be used to convert a functor into a monad. The monad
FP∗ = (P∗, µ, η) is then free monad over abstract probability distributions,
where µ encodes abstract marginalizing semantics and η encodes a Dirac distri-
bution.

With a hat tip to probability theory, these abstract probability distributions are
probably best understood as laws. We can construct a base functor that encodes
an arbitrary number of abstract probability distributions as follows:

data Prob r =

Beta Double Double (Double -> r)

| Bernoulli Double (Bool -> r)

| Gaussian Double Double (Double -> r)

| ...

deriving Functor

Note the structure of this type: it has a number of sum type constructors, each
corresponding to a particular law, and each constructor also carries a number
of typed parameters. ‘Beta Double Double’ corresponds to a beta distribution
with the two usual real parameters — α and β, respectively. ‘Bernoulli Double’
similarly corresponds to a Bernoulli distribution with the usual probability pa-
rameter p. Each constructor also carries a function type as its final field: for
example, ‘Gaussian’ contains a field with type ‘Double -> r’. The type to the
left of the arrow in this function type – in the ‘negative position’ – denotes the
support that the distribution is defined over: observe that the Gaussian and beta
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distributions are defined over the reals, while the Bernoulli distribution is de-
fined over the Boolean set {True, False}. On the right hand of the arrow in the
function type – the ‘positive position’ – is the type parameter of the functor.

Since the type parameter can only occur in the positive position, this type is
guaranteed to be a functor. GHC can thus derive the Functor instance for us —
as is done above — but it is illustrative to demonstrate what the functor instance
looks like:

instance Functor Prob where

fmap f term = case term of

Beta a b r -> Beta a b (f . r)

Bernoulli p r -> Bernoulli p (f . r)

...

Note that the structure of the definition at each branch is the same — we just
compose the mapped function with the continuation at each branch and proceed
to the next one. The following thus suffices to verify that the functor laws hold:

fmap id r

= id . r

= r

fmap (f . g) r

= (f . g) . r

= f . g . r

= fmap f (g . r)

= fmap f (fmap g r)

= (fmap f . fmap g) r

The ‘Prob’ type corresponds toP∗, and applying the free functor ‘Free’ to it yields
the free monad F (P∗) that we’ll call ‘Model’, for ‘probabilistic model’:
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type Model = Free Prob

This is our abstract, structure-preserving probability monad. Since the base func-
tor satisfies the functor laws, an appeal to our argument from Section 4.3.3 demon-
strates that ‘Model’ satisfies the functor and monad laws.

When wrapped up in ‘Free’, the ‘r’ that parameterized ‘Prob’ indicates recursive
points. ‘Free Prob’ terms are thus fixed-points that capture the recursive struc-
ture ‘Free (Prob (Free (Prob (Free …))))’ of a probabilistic program. Concretely,
we can now assemble values of type ‘Model a’, such as the following translation
of the beta-bernoulli model:

betaBernoulli :: Double -> Double -> Model Bool

betaBernoulli a b =

Free (BetaF a b (\p0 ->

Free (BernoulliF p0 (\p1 ->

Pure p1))))

Writing the model in this way corresponds to manually assembling its abstract
syntax, which isn’t so user-friendly. But we can exploit the monadic structure
of the free monad in order to make this convenient. Define the following two
‘smart constructors’ using the ‘liftF’ function described previously:

beta :: Double -> Double -> Model Double

beta a b = liftF (BetaF a b id)

bernoulli :: Double -> Model Int

bernoulli p = liftF (BernoulliF p id)

And now we can use conventional do-notation to stitch our model together:

135



betaBernoulli :: Double -> Double -> Model Bool

betaBernoulli a b = do

p <- beta a b

bernoulli p

This program has the same abstract syntax as the previous example, but it is
every bit as user-friendly and declarative as were the shallowly-embedded Giry
and samplingmonads. The difference is that expressions of type ‘Model’ evaluate
to pure, uninterpreted, structured data.

The free monad thus allows us to create a deep embedding for our probabilistic
programming language — expressions in the embedded language now describe
probabilistic programs without ascribing any particular probabilistic interpreta-
tion to them a priori. A value with type ‘Free f’ represents a program, and the
functor ‘f’ that parameterizes it can be fruitfully interpreted as the available in-
struction set that can be used to define that program. Our probabilistic base func-
tor thus represents a collection of probabilistic instructions that can be assembled
together to create a probabilistic program. Indeed, expressions now represent
their uninterpreted abstract syntax directly, and we can ascribe various proba-
bilistic interpretations to them after-the-fact. Meanwhile the terms and syntax
of the embedded language remain typed, composable, and user-friendly.

This general technique for embedding a monadic probabilistic programming lan-
guage is as follows:

• Define a base functor like ‘Prob’, parameterized over some abstract type
variable. The base functor contains any number of constructors, each cor-
responding to some known probability distribution with parameters of the
appropriate types over some known support type. The constructors have
the form

<Distribution_0> <p_0> .. <p_n> (<support_0> -> k)
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| <Distribution_1> <p_0> .. <p_m> (<support_1> -> k)

| ..

These constructors represent proto-terms of our embedded language. Put
equivalently: the terms of our embedded languagewill be constructed from
abstract, named representations of probability distributions.

• Construct a free monad from the base functor by wrapping it in the ‘Free’
type defined previously, creating a type like ‘Model’ that denotes terms of
the embedded language.

• Create user-friendly terms for the embedded language for defining them
via ‘liftF’:

<distribution_0> <p_0> .. <p_n> =

liftF (<Distribution_0> <p_0> .. <p_n> id)

<distribution_1> <p_0> .. <p_m> =

liftF (<Distribution_1> <p_0> .. <p_m> id)

..

The result is a simple and elegant embedded monadic language for working with
probability distributions. Arbitrary interpreters corresponding to other prob-
ability monads can easily be constructed by using various recursion schemes
available to free monads (for example the ‘iterM’ function previously).

A version of this language is available as the MIT-licensed deanie library [To-
bin, 2017], and an older version is similarly available under the name observable
[Tobin, 2013c].
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4.4.1 Forward-Mode Interpretation

It is easy to use the aforementioned technique to implement any number of min-
imal languages based on some underlying probabilistic instruction set. Using the
distributions we’ve been focusing on thus far as our instruction set, here is the
core of a very simple embedded language, for example:

data Prob r =

Bernoulli Double (Bool -> r)

| Beta Double Double (Double -> r)

| Gaussian Double Double (Double -> r)

deriving Functor

type Model = Free Prob

bernoulli :: Double -> Model Bool

bernoulli p = liftF (Bernoulli p id)

beta :: Double -> Double -> Model Double

beta a b = liftF (Beta a b id)

gaussian :: Double -> Double -> Model Double

gaussian m s = liftF (Gaussian m s id)

These abstract distributions can be viewed as foundational in a sense; they can
be used to create other, more complex distributions:

uniform :: Model Double

uniform = beta 1 1

binomial :: Int -> Double -> Model Int

binomial n p = fmap count coins where
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count = length . filter id

coins = replicateM n (bernoulli p)

betaBinomial :: Int -> Double -> Double -> Model Int

betaBinomial n a b = do

p <- beta a b

binomial n p

The decision as to which ‘foundational’ probability distributions to include in the
underlying instruction set, exactly, is left open. It should probably consist of a
minimal collection of core distributions that can easily be used to create others,
in the spirit of Park et al. [2008]. The exponential family might constitute a good
sweet spot of foundational distributions, for example.

Since the free monad is a kind of template for monads, we can reuse the monadic
structure of the shallowly-embedded measure- and sampling function-based lan-
guages here via the following interpreters:

-- measure-based

measure :: Model a -> Measure a

measure = iterM alg where

alg (Bernoulli p r) = Measurable.bernoulli p >>= r

alg (Beta a b r) = Measurable.beta a b >>= r

alg (Gaussian m s r) = Measurable.gaussian m s >>= r

-- sampling-function based

rvar :: Model a -> MWC.Prob IO a

rvar = iterM alg where

alg (Bernoulli p r) = MWC.bernoulli p >>= r

alg (Beta a b r) = MWC.beta a b >>= r

alg (Gaussian m s r) = MWC.gaussian m s >>= r
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Here the ‘iterM’ recursion scheme simply collapses a freemonad expression from
the top down. Every abstract probability distribution is replaced with a corre-
sponding measure or sampling representation, which is then bound to the con-
tinuation ‘r’ using the appropriate measure- or sampling-based marginalization
semantics.

A simple Gaussian mixture makes for a useful and aesthetically-pleasing demon-
stration of these interpreters. We can define it like so:

mixture :: Double -> Double -> Model Double

mixture a b = do

p <- beta a b

accept <- bernoulli p

if accept

then gaussian (negate 2) 0.5

else gaussian 2 0.5

The ‘rvar’ interpreter takes a model and converts it into a sampling function-
based program that can be executed to produce a sample from the predictive
distribution of the model (see Figure 4.2). Similarly, the ‘measure’ interpreter
takes a model and produces the corresponding predictive measure, which can
then be queried as desired (see Figure 4.3). Here we make use of the ‘iterM’
recursion scheme, which consumes a free monad from the top-down. It allows us
to express an ancestral pass over a model, resulting in a sample from or measure
over the predictive distribution respectively.

4.4.2 Backward-Mode Inference

To encode a ‘backward’ sampler we can reach for any number of approximate in-
ference algorithms. The simplest is a rejection sampler, which produces a sample,
checks it against some predicate, and retains or rejects the sample accordingly:

140



Figure 4.2: Kernel density estimate of the simple Gaussian mixture model defined by ‘mix-

ture 1 3’, constructed from 1000 samples drawn via the forward-mode ‘rvar’ interpreter.

grejection

:: (Foldable f, Monad m)

=> ([a] -> [b] -> Bool) -> f b -> m c -> (c -> m a) -> m c

grejection predicate observed proposal model = loop where

len = length observed

loop = do

parameters <- proposal

generated <- replicateM len (model parameters)

if predicate generated (Foldable.toList observed)

then return parameters

else loop

rejection

:: (Foldable f, Monad m, Eq a)
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Figure 4.3: Cumulative distribution function (CDF) for the simple Gaussian mixture model

defined by ‘mixture 1 3’, recovered via the ‘cdf’ query composed with the forward-mode

‘measure’ interpreter.

=> f a -> m b -> (b -> m a) -> m b

rejection = grejection (==)

The ‘grejection’ interpreter is a generalized rejection sampler that takes a generic
predicate as an argument, while ‘rejection’ is a rejection sampler simply special-
ized to check for equality. Each also requires a collection of observations to
condition on, as well as a parameter and data model. Note that we don’t actu-
ally need to concretely refer to our ‘Model’ type here — this kind of rejection
sampling can be defined in a totally abstract fashion such that it works for any
monad.

To illustrate, here is a distribution for a simple Bernoulli model conditioned on
nine ‘True’ and three ‘False’ values, approximated via rejection sampling. We
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repeatedly propose parameters p from a uniform distribution over (0, 1) and use
them to generate a sample from the model. If a proposed parameter success-
fully generates a sample with the same number of ‘true’ values as found in the
observations, the sample is not rejected:

obs :: [Bool]

obs =

[ True, True, True, False, True, True

, True, False, True, True, True, False

]

rinverse :: Model Double

rinverse = grejection count obs uniform bernoulli where

count = length . filter id

Note that this distribution has the type ‘Model Double’, so like anything else we
can interpret it into a sampling function using the ‘rvar’ interpreter in order to
draw samples from it (see Figure 4.4):

> replicateM 1000 (simulate (rvar rinverse))

We can similarly encode an importance sampling interpreter. Note again that we
can actually write this in terms of any monad:

importance

:: (Foldable f, Monad m, Floating w)

=> f a -> m b -> (b -> a -> w)

-> m (w, b)

importance obs proposal likelihood = do

parameter <- proposal

let cost = L.fold (L.premap (likelihood parameter) L.sum) obs

return (exp cost, parameter)
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Figure 4.4: Histogram of 1000 samples from the inverse distribution of Bernoulli parameters

when the model is conditioned on nine ‘True’ and three ‘False’ values.

The ‘importance’ interpreter requires a collection of observations to condition a
model on, a parameter model to make proposals, and a weighting function (typi-
cally a log-density) to calculate importance weights for the proposed parameters.
Note that the ‘L’ qualifier refers to helper functions from the foldl library [Gon-
zalez, 2013] that we can otherwise ignore.

Unlike the rejection sampling interpreter, the importance sampling interpreter
also returns an importance weight for every sample drawn from it. We can write
the appropriate weighting function and importance sampling-encoded inverse
model for the simple Bernoulli model like so:

logDensityBernoulli :: Double -> Bool -> Double

logDensityBernoulli p x

| p < 0 || p > 1 = log 0
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| x = log p

| otherwise = log (1 - p)

iinverse :: Model (Double, Double)

iinverse = importance obs uniform logDensityBernoulli

Sampling from the inverse model yields a collection of weighted samples of pa-
rameter values for the conditioned Bernoulli distribution. We can just apply a
weighted average to those in order to estimate the expected parameter:

> samples <- replicateM 1000 (simulate (rvar iinverse))

> waverage samples

0.7204870938868593

As a final example we can implement a variant of Metropolis-Hastings, a state-
ful MCMC algorithm which has historically been the baseline for reliable ap-
proximate inference in Bayesian statistics. It has the following straightforward
implementation:

data MHP a = MHP {

n :: Int

, current :: a

, ccost :: Double

}

metropolis

:: Foldable f

=> Int -> f a -> Model b -> (b -> a -> Double)

-> Model [b]

metropolis epochs obs prior model = do

current <- prior
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unfoldrM mh MHP { n = epochs, ccost = cost current, .. }

where

cost param = L.fold (L.premap (model param) L.sum) obs

mh MHP {..}

| n <= 0 = return Nothing

| otherwise = do

proposal <- prior

let pcost = cost proposal

prob = moveProbability ccost pcost

accept <- bernoulli prob

let (nepochs, nlocation, ncost) =

if accept

then (pred n, proposal, pcost)

else (pred n, current, ccost)

return (Just (nlocation, MHP nepochs nlocation ncost))

moveProbability :: Double -> Double -> Double

moveProbability current proposal =

whenNaN 0 (exp (min 0 (proposal - current)))

where

whenNaN val x

| isNaN x = val

| otherwise = x

Note that we encode the state of the algorithm in its own data structure, ‘MHP’.
The algorithm implementation itself follows the same ‘unfoldrM’ recursion scheme
pattern used to define the autoregressive model in Section 4.2.2 (this turns out
to be a common pattern for encoding stochastic processes in this type of embed-
ded language). The kernel of the algorithm is encoded in the local ‘mh’ binding.
This is also the first sampling interpreter that must be specified in terms of the
‘Model’ monad, since we need to make a Bernoulli draw in the accept/reject step
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of the algorithm itself. As an implementation detail that we also use in the se-
quel, note that we use GHC’s ‘RecordWildCards’ extension to use syntax like
‘MHP {..}’ that allows us to easily unpack and use the records of a product type
like ‘MHP’.

Given the ‘metropolis’ interpreter we can encode another inverse of the run-
ning Bernoulli model as follows. This one is encoded via 10000 iterations of the
Metropolis-Hastings algorithm:

minverse :: Model [Double]

minverse = metropolis 10000 obs uniform logDensityBernoulli

Note that this is actually a distribution over the results of those 10000 MH iter-
ations, so sampling once from this model via the ‘rvar’ interpreter will return a
collection of 10000 samples. Otherwise, the procedure is the same as always:

> samples <- sample (rvar minverse)

The trace of the Markov chain is displayed in Figure 4.5.

4.5 Working with Structure

Recall the simple mixture model from Section 4.4.1, repeated below:

mixture :: Double -> Double -> Model Double

mixture a b = do

p <- beta a b

accept <- bernoulli p

if accept

then gaussian (negate 2) 0.5

else gaussian 2 0.5
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Figure 4.5: Trace of 10000 iterations of the Metropolis-Hastings sampler over the inverse

distribution of Bernoulli parameters when the model is conditioned on nine ‘True’ and three

‘False’ values. The chain moves as expected (making proposals from the prior).

This model has two internal parameters; a beta-distribution probability parame-
ter p and a Bernoulli(p)-distributed parameter denoted by ‘accept’. Its structure
is visualized in Figure 4.6. It’s important to note that in this embedded frame-
work, the only pieces of the syntax tree that we can observe are those related
directly to our primitive instructions. For our purposes this is excellent — we
can focus on programs entirely at the level of their probabilistic components,
and ignore the deterministic parts that might otherwise distract.

Since sampling is lossy, the Metropolis-Hastings implementation from the pre-
vious section doesn’t give us a way to observe, perturb, or otherwise interpret
the internal Bernoulli parameter when performing inference. Like the rejection
and importance samplers, we had to divide things into a parameter model (to
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Figure 4.6: A visualization of the core probabilistic structure of the simple Gaussian mixture

model, in terms of its AST. A probability p is beta-distributed according to some supplied

hyperparameters, and then that probability is used to denote a Bernoulli(p)-distributed coin

flip. The program branches according to the coin flip, where each branch denotes a distinct

Gaussian distribution. The program then terminates at each branch via an implicit Dirac

distribution depending on that branch’s Gaussian.

generate proposals) and data model (to score the generated samples, or accep-
t/reject a proposed move) such that we are only able to make proposals from the
prior or parameter model. This is unsatisfying as it yields very little control over
the inference algorithm; by using the prior to propose moves we can be prone
to making overly-aggressive proposals that are unlikely to be accepted. It is typ-
ically more productive to perturb the state of the Markov chain in parameter
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space only slightly in order to achieve an efficient proposal acceptance rate.

4.5.1 Algebraic Cofreeness and the Cofree Comonad

We’ve demonstrated that the free monad provides a convenient way to generate
abstract syntax for a model. But there exists another structure called the cofree
comonad that can be used to implement approximate inference algorithms. In
this section we’ll briefly develop the cofree comonad and then describe how it
can be used for inference.

The cofree comonad is the categorical dual of the free monad — it corresponds
to a structure in the opposite category defined by reversing the direction of all
morphisms and interchanging the order of composition.

A comonad is a triple (F, δ, ϵ) such that δ : F → F 2 is a ‘duplicating’ natu-
ral transformation and ϵ : F → I is a ‘coidentity’ or ‘counit’. Note that both
of these natural transformations are simply reversed versions of their monadic
counterparts. The monadic bind operator ≫= also has a comonadic analogue in
the following operator, called extend:

=≫: F (M) → (F (M) → N) → F (N).

Akin to monads, comonads in Haskell are implemented via the ‘Comonad’ type-
class, defined as follows:

class Functor w => Comonad w where

extract :: w a -> a -- ’counit’

duplicate :: w a -> w (w a) -- ’cojoin’

The ‘extend’ function corresponding to a flipped-argument form of =≫ is then
defined like so:
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extend :: Comonad w => (w a -> b) -> w a -> w b

extend f = fmap f . duplicate

Comonads must obey certain laws — namely, those dual to the monad laws. They
are most succinctly expressed in terms of morphisms of the form⁴ wa→ b under
the comonadic function composition operator ‘=>=’, defined as:

(=>=) :: Comonad w => (w a -> b) -> (w b -> c) -> w a -> c

f =>= g = g . extend f

Thus defined, we can state the comonad laws as the familiar associative and iden-
tity requirements. For appropriate f, g, h we have:

extract =>= f = f -- left-identity

f =>= extract = f -- right-identity

(f =>= g) =>= h = f =>= (g =>= h) -- associativity

Dual to a free functor, a cofree functor is right-adjoint to a forgetful functor. So
defining a forgetful functor U : Comonad → F from the category of comonads
to the category of functors, a right-adjoint functor F : F → Comonad is one
that endows a functor with the minimum required structure to be a comonad.
This is the cofree comonad we’re looking for.

In code, we can define the cofree comonad of a functor ‘f’ as follows:

data Cofree f a = Cofree a (f (Cofree f))

Note that the free monad is a sum type and the cofree comonad is a product

type. But they each have a similar recursive structure. Whereas a free monad

⁴These are the morphisms of the so-called co-Kleisli category of the comonad.
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represents a syntax tree that can terminate independently of its base functor,
a cofree comonad represents an annotated syntax tree that can only terminate
according to its base functor. Like the free monad, the cofree comonad is well-
supported in the Haskell ecosystem by the free library, which encodes it in using
the following infix constructor ‘:<’ that we’ll refer to in the sequel:

data Cofree f a = a :< f (Cofree f)

Like the freemonad, the cofree comonad of any functor is automatically a comonad,
and thus satisfies the requisite functor and comonad laws [Uustalu and Vene,
2008].⁵

If we consider the functor P∗ from Section 4.4 that takes a measurable space
to the space of abstract probability distributions over it, we can construct the
cofree comonad (P∗, δ, ϵ). The idea here is that we can use the cofree comonad
of the abstract probability functor in order to annotate syntax trees with in-
formation about execution state, such as likelihood value, current position in
parameter space, random seeds, histories, and so on. The counit ϵ then extracts
this execution state. A cofree-wrapped ‘Prob’ functor can thus be used to en-
code the execution trace of a probabilistic program in the sense of Wingate et al.
[2011], for example. Indeed, an execution trace has the following type:

type Execution a = Cofree (Prob a) Node

where ‘Node’ is a type that encodes all the execution information we need in
order to implement our inference algorithm of choice. Figure 4.7 shows an an-
notated visualization of the mixture model shown in Figure 4.6.

⁵Note that we can simply appeal to categorical duality here — since a free monad satisfies the
monad laws, the cofree comonad must satisfy the comonad laws.
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Figure 4.7: A visualization of an execution trace of the Gaussian mixture model. Each

primitive probabilistic instruction from the base functor is annotated with a data structure

called ‘Node’ that stores execution information like parameter space position, likelihood

value, and so on.

4.5.2 Representing Programs That Terminate

Recall our probabilistic instruction set ‘Prob’ consisting of abstract beta, Bernoulli,
and Gaussian distributions. Note that it doesn’t include a terminating instruction
of its own; the last field of each of the branches is a continuation that is used to
pass control to the ‘rest’ of the program from that point. When wrapped up
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with the ‘Free’ type, we implicitly used the ‘Pure’ constructor — which has the
semantics of a Dirac distribution — in order to terminate programs.

One can convert a free monad-encoded program into a cofree comonad-encoded
program mechanically, so long as the underlying functor contains a terminating
instruction. We can do this by adjusting the underlying base functor in order to
include an abstract Dirac distribution, rather than by relying on the ‘Free’ type
to provide it for us:

data Prob a r =

Bernoulli Double (Bool -> r)

| Beta Double Double (Double -> r)

| Gaussian Double Double (Double -> r)

| Dirac a

deriving Functor

Note that we’ve added an extra type parameter to ‘Prob’. Since the ‘r’ type pa-
rameter is used to denote recursive points, the ‘a’ parameter holds information
about what type (if anything) a program terminates with. ‘Dirac’ is a terminating
instruction because it doesn’t contain a continuation — it’s structurally equiva-
lent to the ‘Pure a’ branch of ‘Free’ that we used previously. We can then wrap
‘Prob’ up with ‘Free’ just like before, except now there is an extra type parameter
to lug around:

type Model a = Free (Prob a)

beta :: Double -> Double -> Model a Double

beta a b = liftF (Beta a b id)

-- ...
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dirac :: a -> Model a b

dirac x = liftF (Dirac x)

Our interpreters can be augmented accordingly aswell, whereas nothing changes
at all from the user’s perspective. Note that in ‘Model a b’, the ‘a’ type parameter
can only be concretely instantiated via use of the terminating ‘dirac’ term. On
the other hand, the ‘b’ type parameter is unaffected by the ‘dirac’ term; it can only
be instantiated by the other nonterminating terms encoded in the base functor.

We can distinguish between terminating and nonterminating programs at the
type level, like so:

type Terminating a = Model a Void

type Program b = forall a. Model a b

‘Void’ is the uninhabited type, brought into scope via ‘Data.Void’. Any program
that ends via a ‘dirac’ instruction must be ‘Terminating’, and any program that
doesn’t end with a ‘dirac’ instruction can not be ‘Terminating’. We’ll call a non-
‘Terminating’ model a ‘Program’. Note that the notion of termination used for
programs here is extremely weak. A ‘Terminating’ program may fail to termi-
nate, for example as in the following program:

looper :: Terminating a

looper = (loop 1) >>= dirac where

loop a = do

p <- beta a 1

loop p

A less-churlish program may still fail to terminate with probability 1, for ex-
ample. The only guarantee we have is that termination can be expressed at the
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language level, which is weak, but suffices for transforming a free-encoded pro-
gram into a cofree-encoded one. Note that all primitive probabilistic instructions
aside from ‘Dirac’ are nonterminating (i.e. they contain a continuation accepting
a value from their support), so ‘Dirac’ is the only terminating instruction we ever
need concern ourselves with.

4.5.3 Running Markov Chains over Execution Traces

Towrite a comonadic ‘backward-mode’ sampling interpreter, we’ll use a ‘Cofree’-
encoded model in the following manner:

• Sample from a parameter model, recording the way the program executed
in order to return the sample that it did.

• Compute the cost (in the log-likelihood sense) of generating the provided
observations, using the sample from the parameter model as input.

• Propose a new sample from the parameter model by perturbing the way the
program executed and recording the new sample outputted by the program.

• Compute the cost of generating the provided observations using this new
sample from the parameter model as input.

• Compare the costs of generating the provided observations under the re-
spective samples from the parameter models.

• With probability depending on the ratio of the costs, flip a coin. If we see
a head, we’ll move to the new, proposed execution trace of the program.
Otherwise we’ll stay at the old execution trace.

This procedure generates a Markov chain over the space of possible execution
traces of the program — essentially, plausible ways that the program could have
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executed in order to generate the supplied observations. Implementations of
Church [Goodman et al., 2008] use variations of this method to do inference, the
most famous of which is a low-overhead transformational compilation procedure
described by Wingate et al. [2011].

The following ‘Node’ type is what we’ll use to describe the internal state of each
parameter in the program:

data Node = Node {

nodeCost :: Double

, nodeValue :: Dynamic

, nodeSeed :: MWC.Seed

, nodeHistory :: [Dynamic]

} deriving Show

Since the parameters of any model may be at different types, we store them
using the ‘Dynamic’ type from Haskell’s ‘Data.Dynamic’ library that defers po-
tential type errors until runtime.⁶ Importantly, it also happens to be the case
that one can’t easily interleave monadic and comonadic effects, so we annotate
each parameter in the model with its own random seed in order to do random
number generation purely. The history of each position visited in parameter is
also stored.

Initializing, perturbing, and scoring the traces can be done with similar functions
that describe how to initialize, perturb, or score a given node by matching on the
branches of the probabilistic instruction set. To initialize an execution trace we
can use a function like the following:

initialize :: Typeable a => MWC.Seed -> Prob a b -> Node

initialize seed instruction = case instruction of

⁶Another option here would just be to define an explicit ‘Parameter’ type that encoded the
supported value types of the embedded language: booleans, doubles, etc.
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Bernoulli p _ -> runST (do

(nodeValue, nodeSeed) <- samplePurely (Prob.bernoulli p) seed

let nodeCost = logDensityBernoulli p (unsafeFromDyn nodeValue)

nodeHistory = []

return Node {..})

-- other branches are handled similarly

..

The idea here is that we match on every possible branch of the base functor and
describe a way to create a ‘Node’. The ‘samplePurely’ function provides us with
a ‘nodeValue’ for the node, as well as a ‘nodeSeed’, and we can compute the
‘nodeCost’ by applying the appropriate cost function to the sampled value. Note
that here and in the sequel wemake use of Haskell’s so-called ‘strict state monad’
(visible via the ‘runST’ function) for pseudorandom number generation, but this
is an implementation detail that is unnecessary to discuss further.

Given an ‘initialize’ function, we can transform a ‘Terminating’ program into
an execution trace by simple recursion. We use the ‘Terminating’ information
in the program’s type and the ‘absurd’ function from ‘Data.Void’ to rule out the
possibility of ever visiting the free monad’s ‘Pure’ constructor:

execute :: Typeable a => Terminating a -> Execution a

execute = annotate defaultSeed where

annotate seeds term = case term of

Pure r -> absurd r

Free instruction ->

let (nextSeeds, generator) = xorshift seeds

seed = MWC.toSeed (V.singleton generator)

node = initialize seed instruction

in node :< fmap (annotate nextSeeds) instruction
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It is worth explaining this in some detail.

Herewe are essentially converting a ‘Free’-encoded description of a program into
a ‘Cofree’-encoded description of a program. Each node in a free monad-encoded
program carries information of either the type ‘f r’, for ‘f’ a base functor and ‘r’
a recursive point, or some arbitrary type ‘a’. The ‘f r’ information is indicated
by the constructor ‘Free’, and the information ‘a’ is indicated by the construc-
tor ‘Pure’. Dually, each node in a cofree-encoded program carries information
about both the type ‘f r’ and some arbitrary type ‘a’. Here both the ‘f r’ and ‘a’
information is captured at each node via the ‘:<’ constructor; the ‘a’ information
is positioned on its left and the ‘f r’ information on its right, yielding the form ‘a
:< f r’.

To convert from ‘Free’ to ‘Cofree’, we can recurse over the ‘Free’ description
and mechanically replace each ‘Free’ constructor we find with the appropriate
cofree constructor, ‘:<’. However we also need to provide an annotation for that
constructor at every node. This is the ‘Node’ type that we annotate with. In the
code above, the line containing:

in node :< fmap (annotate nextSeeds) instruction

describes this recursive procedure, where ‘node’ is the appropriately-constructed
annotation and ‘fmap’ lets us recurse as needed. Note that if we ever encountered
a ‘Pure’ node while recursing, we would not be able to construct any correspond-
ing node for the cofree-encoded program. This is why we have to rule out ever
visiting a ‘Pure’ node statically in order to convert from ‘Free’ to ‘Cofree’, and we
do this using the information captured in the ‘Terminating’ type signature. The
‘absurd’ function used for the ‘Pure’ branch above asserts, in a type-safe and thus
verifiable manner, that it is impossible to encounter a ‘Pure’ node when recursing
over any ‘Terminating’ program.

Note that the ‘annotate’ function used above requires an additional argument in
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the form of a seed for the PRNG to be located at a given node. We use the xorshift
PRNG of Marsaglia et al. [2003] in order to construct the seeds themselves purely
and pseudorandomly.

So the ‘execute’ function lets us create an execution trace from a ‘Terminating’
program. To perturb a trace, we define a perturbing function similar to ‘initialize’
that describes how to perturb any given primitive instruction:

perturbNode :: Execution a -> Node

perturbNode (Node {..} :< instruction) = case instruction of

Bernoulli p _ -> runST (do

(nvalue, nseed) <- samplePurely (Prob.bernoulli p) nodeSeed

let nscore = logDensityBernoulli p (unsafeFromDyn nvalue)

return (Node nscore nvalue nseed nodeHistory))

-- other branches are handled similarly

..

Here we perturb a ‘Node’ by sampling in some manner appropriate to the branch
of the base functor we encounter, and then update the state of the node accord-
ingly. We then use a comonadic ‘extend’ to apply this perturbation to an entire
execution trace:

perturb :: Execution a -> Execution a

perturb = extend perturbNode

The intuition here is that whenwe ‘extend’ a function over an execution trace, the
trace first gets duplicated in a comonadic context, meaning that each parameter
in the trace becomes annotated with a view of the rest of the execution trace from
that point forward (see Figure 4.8 for a visualization of this). We then map the
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‘extended’ function over the duplicated trace, reducing it back down to a run-of-
the-mill trace. In this casewe’re reducing a duplicated trace via the ‘perturbNode’
function that operates on the level of individual nodes.
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Figure 4.8: A visualization of an execution trace that has been duplicated in a comonadic

context. Each primitive probabilistic instruction from the base functor becomes annotated

with a view of the rest of execution trace from that point forwards.

To move around in trace space, we’ll propose state changes by perturbing the
current state, scoring them, and then accepting/rejecting proposals accordingly.
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Eliding extra detail for readability, the comonadic backward-mode interpreter
can be defined as follows (see Appendix A for additional detail):

invert

:: (Eq a, Typeable a, Typeable b)

=> Int -> [a] -> Program b -> (b -> a -> Double)

-> Program (Execution b)

invert epochs obs prior ll =

loop epochs (execute (prior >>= dirac))

where

loop n current

| n == 0 = return current

| otherwise = do

let proposal = perturb current

-- <calculate costs and acceptance probability>

accept <- bernoulli prob

let next = if accept then proposal else stepGenerators current

loop (pred n) (snapshot next)

Note that this interpreter returns amodel over execution traces, sowe can inspect
or manipulate them at the embedded language level.

There are two important points to note in order to get this implementation right.
Regardless of whether or not we accept a proposed move, we need to snapshot
the current value of each node and add it to that node’s history. This can be done
using another comonadic extend:

snapshotValue :: Cofree f Node -> Node

snapshotValue (Node {..} :< cons) =

Node { nodeHistory = history, .. }
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where

history = nodeValue : nodeHistory

snapshot :: Functor f => Cofree f Node -> Cofree f Node

snapshot = extend snapshotValue

The other point is an extremely easy detail to overlook. Since we’re handling
random value generation at each node purely, using on-site random seeds, we
need to iterate the generators forward a step in the event that we don’t accept a
proposal (otherwise we’d propose a new execution based on the same generator
states used previously). This can be done by forcing a cheap sample at each node
and then just throwing away the result, implemented via another comonadic
extend:

stepGenerator :: Cofree f Node -> Node

stepGenerator (Node {..} :< cons) = runST (do

(nval, nseed) <- samplePurely (Prob.beta 1 1) nodeSeed

return Node {nodeSeed = nseed, ..})

stepGenerators :: Functor f => Cofree f Node -> Cofree f Node

stepGenerators = extend stepGenerator

4.5.4 Working With Execution Traces

To demonstrate how we can work with the comonadic MCMC implementation,
let’s examine samples from the inverse distribution of themixturemodel achieved
by conditioning its output on some observations. The inverse of a ‘mixture 3 2’
model can be encoded like so, iterating the Markov chain over executions 1000
times:
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cinverse :: Program (Execution Bool)

cinverse = invert 1000 obs prior ll where

obs = [ -1.7, -1.8, -2.01, -2.4, 1.9, 1.8]

prior = do

p <- beta 3 2

bernoulli p

ll left

| left = logDensityNormal (negate 2) 0.5

| otherwise = logDensityNormal 2 0.5

Since we store the location history of each parameter in its associated metadata,
a single sample from ‘cinverse’ will return a trace with each parameter’s history
cached on-site:

> execution <- sample (rvar cinverse)

We can step through the returned execution in order to examine its structure, us-
ing the stored values recorded at each parameter to ‘automatically’ step through
execution, or we can supply our own parameter values to investigate arbitrary
branches. The following ‘step’ function lets us walk through a trace step by step,
using the current value stored at each node to proceed further (the more generic
‘stepWithInput’ allows us to supply our own input):

step :: Typeable a => Execution a -> Execution a

step prog@(Node {..} :< _) = stepWithInput nodeValue prog

stepWithInput :: Typeable a => Dynamic -> Execution a -> Execution a

stepWithInput value prog = case unwrap prog of

Bernoulli _ r -> r (unsafeFromDyn value)
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Beta _ _ r -> r (unsafeFromDyn value)

Gaussian _ _ r -> r (unsafeFromDyn value)

Dirac _ -> prog

Walking through the above trace, we can extract the information recorded about
all parameters in the prior. Figures 4.9 and 4.10 show a trace and density of
the mixing parameter p internal to the prior, while Figures 4.11 and 4.12 display
similar information for the Bernoulli(p)-distributed mixture component.

0.25
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1.00

0 250 500 750 1000
epoch

p

Figure 4.9: Positions of the mixing parameter p gathered from 1000 epochs of a Markov

chain running over executions of the ‘mixture 3 2’ model conditioned on some observations.

The chain moves as expected according to the perturbation function used (proposing moves

from the prior).

Note that we can alter the ‘perturbNode’ function to support arbitrary pertur-
bations to executions. In the above example we perturbed each parameter by
sampling from the prior at that node, but we can instead sample according to
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Figure 4.10: Kernel density estimate of the inverse distribution of the mixing parameter p

gathered from 1000 epochs of a Markov chain running over executions of the ‘mixture 3

2’ model conditioned on some observations. The density has the expected shape given the

beta(3, 2) prior and mostly-negative observations.

Gaussian ‘bubbles’ with a given step size at each continuous parameter in single-
site fashion, for example:

altPerturb :: Double -> Execution a -> Execution a

altPerturb eps = extend (perturbNode eps)

altPerturbNode :: Double -> Execution a -> Node

altPerturbNode eps (node@Node {..} :< cons) = case cons of

BetaF a b _ -> runST (do

let mval = unsafeFromDyn nodeValue :: Double

val = if mval < 0 || mval > 1 then 0 else mval

(nvalue, nseed) <- samplePurely (Prob.normal val eps) nodeSeed
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Figure 4.11: Jittered positions of the mixture component gathered from 1000 epochs of a

Markov chain running over executions of the ‘mixture 3 2’ model conditioned on some ob-

servations. The chain tends to jump out of the rightmost component rapidly after entering

it.

let nscore = logDensityNormal val eps (unsafeFromDyn nvalue)

ndist = Beta a b

return (Node nscore nvalue nseed nodeHistory ndist))

NormalF m s _ -> runST (do

let val = unsafeFromDyn nodeValue :: Double

(nvalue, nseed) <- samplePurely (Prob.normal val eps) nodeSeed

let nscore = logDensityNormal val eps (unsafeFromDyn nvalue)

ndist = Normal m s

return (Node nscore nvalue nseed nodeHistory ndist))
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Figure 4.12: Count of the positions of the mixture component gathered from 1000 epochs of

a Markov chain running over executions of the ‘mixture 3 2’ model conditioned on some

observations. Most of the time is spent in the leftmost component of the mixture.

-- ..

Figure 4.13 displays a trace of aMarkov chain over the internal p parameter when
using ‘altPerturb 0.1’ as the perturbation function.

4.6 Encoding Structural Independence

Before concluding this chapter, it is worth noting a small but interesting tech-
nique for encoding structural independence information in a probabilistic pro-
gram using the free applicative functor [Capriotti and Kaposi, 2014]. We don’t
take this idea far here, but simply want to note it exists, and how it can be used
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Figure 4.13: Positions of the mixing parameter p gathered from 1000 epochs of a Markov

chain running over executions of the ‘mixture 3 2’ model conditioned on some observations,

using an alternate perturbation function. The chain moves as expected according to the

perturbation function used (proposing small, Gaussian-distributed steps about its present

location).

in conjunction with the kind of ‘Free’-embedded language we’ve been discussing
thus far.

Categorically, the free applicative is defined in similar fashion to the free monad
— it is left-adjoint to a forgetful functor that simply drops the applicative struc-
ture around a functor. In code, it is defined as follows:

data Ap f a where

Pure :: a -> Ap f a

Ap :: f a -> Ap f (a -> b) -> Ap f b
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Recall from Chapter 3 that applicative expressions encode independence in prob-
abilistic models. The ‘Ap’ type is just a structure-preserving analogue of this, so
to encode independence structurally we can use it to wrap up a probabilistic base
functor, and then include that wrapped structure in our syntax tree.

Given our simple beta/Bernoulli/Gaussian base functor ‘Prob’, the following types
allow us to use the free applicative to encode independence in our programs:

newtype Model a = Model (Sum Prob (Ap (Free Model)) a)

deriving Functor

type Program = Free Model

Here ‘Sum’ is a coproduct of functors. A coproduct of objects X and Y in some
category is an object X + Y such that there exist morphisms i : X → X + Y

and j : Y → X + Y satisfying the universal property that, for any Z and
morphisms k : X → Z and l : Y → Z , there exists a unique morphism f such
that k = f ◦i and l = f ◦j. A coproduct of functors is a coproduct in the category
of functors between some categoriesC andD. In terms of Haskell code, it simply
represents a sum type where each branch holds a value of one of the provided
functors, parameterized with some type parameter common to both branches.
The following code defines our typical language terms; note the ‘InL’ and ‘InR’
constructors for each branch of our aforementioned sum type:

bernoulli :: Double -> Program Bool

bernoulli p = liftF (ProgramF (InL (BernoulliF p id)))

beta :: Double -> Double -> Program Double

beta a b = liftF (ProgramF (InL (BetaF a b id)))

gamma :: Double -> Double -> Program Double
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gamma a b = liftF (ProgramF (InL (GammaF a b id)))

gaussian :: Double -> Double -> Program Double

gaussian m s = liftF (ProgramF (InL (GaussianF m s id)))

Note the recursive structure of ‘Program’ –we have a base functor wrapped up in
‘Free’ as per usual, but the base functor is slightly more complicated than before.
At each recursive point of the model, we can either have a primitive probabilistic
instruction or a collection of conditionally independent expressions. These latter
expressions could themselves either be primitive probabilistic instructions, or yet
another collection of conditionally independent expressions, etc.

To encode independence structurally we can use the following combinators:

replicateA :: Applicative f => Int -> f a -> f [a]

replicateA n = sequenceA . replicate n

product :: Ap (Free Model) a -> Program a

product term = liftF (ProgramF (InR term))

iid :: Int -> Program a -> Program [a]

iid n term = product (replicateA n (liftAp term))

Here ‘liftAp’ is analogous to the free monad’s ‘liftF’, and ‘sequenceA’ is a function
that simply sequences together all applicative effects in a collection. In particular,
the ‘iid’ function denotes a plate of n (conditionally) independent and identically
distributed variables in the traditional probabilistic graphical model sense.

For illustration, the following program illustrates a model that combines functo-
rial, applicative, and monadic structure:

nestedPlates :: Int -> Int -> Double -> Double -> Program [[Bool]]

nestedPlates m n a b = do
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c <- fmap (+ 1) (beta a b)

d <- fmap (+ 2) (beta a b)

iid m (do

p <- beta c d

iid n (bernoulli p))

The two nested plates ofm and n variables each in the above program can be stat-
ically identified as such during interpretation, and their contents are amenable
to some static analysis that we’re unable to achieve via monads [Capriotti and
Kaposi, 2014]. Here we simply note that this technique allows us to denote struc-
tural conditional independence information in a model explicitly, but leave fur-
ther investigation out of scope.

4.7 Summary and Comparison to Other Work

4.7.1 Free Monad Encoding

The free monad encoding technique is well-known in functional programming
circles for deeply-embedding domain specific languages, but to the best of this
author’s knowledge it had not been applied in a probabilistic programming con-
text until recently.⁷ Ścibior et al. [2015] used a very similar technique to embed
a probabilistic programming language in Haskell — their approach seems more
akin to an operational monad, to which a free monad is known to be ‘roughly’
isomorphic [Apfelmus, 2010]. That approach differs in that it does not use a base
functor of abstract probability distributions to parameterize ‘the’ free monad;

⁷It seems that at least three free monad-like implementations were developed independently
at around the same time in mid-2015: the implementation presented here, that of Ścibior et al.
[2015], and also an implementation posted at https://goo.gl/RpGxfe that has not seen any
development since.
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instead the foundational probability distributions are defined via top-level func-
tions that return a value at a specific type corresponding to a probability distri-
bution, similar to the Giry monad of Chapter 3 or the sampling monad presented
near the start of this chapter. Zinkov and Shan [2016] described a similar abstract
language based on a sort of manually-assembled free or operational monad struc-
ture, which is structurally similar to that in the present work, but was (clearly
intentionally) not designed with pleasant user-facing syntax in mind.

The free encoding presented here seems to have some advantages around sim-
plicity of implementation and re-use. The probabilistic instruction set encoded as
a base functor can be re-used to parameterize any number of higher-kinded re-
cursive types, and indeedwe use this feature to implement the comonadicMCMC
algorithm in Section 4.5.3. The base functor can similarly be re-used to encode
different structure present in a program, for example via the free applicative
in order to encode independence. The operational-style monad of Ścibior et al.
[2015] seems to be more of a monolith in comparison. The pros and cons of ei-
ther implementation seem to reduce to ‘free’ vs ‘operational’ pedantry, and we
won’t consider it any further here. We note that Ścibior et al. [2015] found that
the operational encoding was insufficient to implement a single-site Metropolis-
Hastings algorithm, which can be implemented via transformation to a cofree
encoding (see Section 4.5.4).

The free monad encoding that we’ve used here is known to be asymptotically in-
efficient – having quadratic complexity in the number of monadic binds – com-
pared to an alternate Church encoding [Voigtländer, 2008]. However, it’s worth
noting that this author has experimented with several Church-encoded proba-
bilistic programming languages not discussed in this thesis and has actually ob-
servedworse performance from them. The naïve encoding tends to be reasonably
quick, and is also much easier to use than the Church encoding.

The free monad must be weighed against other means of deeply-embedding a
language in Haskell. The free monad technique is particularly lightweight and
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can be implemented with a minimum of code; a significantly more heavyweight
deep embedding was originally found in Hakaru [Hakaru, 2014], which has since
moved to a standalone language. Such a deep embedding is able to capture more
structure than can be done via the free monad, if one is willing to discard fea-
tures like function application, type system, variable binding, etc. from the host
language. But the implementation cost is higher; since probabilistic models are
monadic anyway, the free monad approach works particularly well here for im-
plementing minimalist embedded probabilistic programming languages.

A deeper embedding than can be provided via a free monad can be useful when
one needs to be able to examine additional structure in expressions. Function
application is an important one in particular; to illustrate, consider the following
model:

shiftedBeta :: Double -> Double -> Program Double

shiftedBeta a b = fmap (+ 1) (beta a b)

This is a beta distribution whose support has been shifted from (0, 1) to (1, 2).
Sampling from this model will work as expected, but a naïve interpreter that
attempts to calculate a beta log-likelihood at a point bymatching on the primitive
instruction ‘Beta’ will be foiled. For instance, if one merely looks up the beta log-
density and attempts to evaluate it at a point in the shifted support such as 1.5,
the result will be incorrect. The problem is that the application of ‘fmap (+ 1)’ to
the language term cannot be observed in this embedding, since it comes entirely
from the host language.

If one does not wish to live with these restrictions, other useful techniques for
deeply-embedding languages in Haskell include higher-order abstract syntax
(HOAS) [Pfenning and Elliott, 1988], parametricHOAS (PHOAS) [Chlipala, 2008],
and abstract syntax graph encodings [Oliveira and Löh, 2013]. Mainland and
Morrisett [2010] describe a method for implementing observable function ap-
plication in a deeply-embedded language, in particular. Ramsey and Pfeffer
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[2002] developed a stochastic lambda calculus for denoting probabilistic pro-
grams. They described how expressions in that language can be evaluated via
interpretation to a probability monad (such as the sampling or Giry monad), so
it follows that expressions of the stochastic lambda calculus can trivially be eval-
uated to a free monad encoding of a probability monad in turn.

An important point about the free monad technique is that it is primarily useful
for embedding a language in a statically-typed, purely functional host language like

Haskell. It stands to reason that the free monad technique should transfer well
to languages like Agda or Idris, and to some degree in an ML-flavoured language
like OCaml, but is best avoided as an implementation technique for a standalone
language, or for languages without a strong type system or those lacking support
for functional programming idioms.

An extended lambda calculus is also used to implement Church [Goodman et al.,
2008] (which is at its core an extension of Scheme) and some of its relatives. More
generally, most probabilistic programming languages, embedded or no, tend to
use as a basis a collection of abstract probability distributions that can be associ-
ated with some particular semantics or collection of semantics — many popular
probabilistic programming languages such as Anglican [Wood et al., 2014], Ven-
ture [Mansinghka et al., 2014], BLOG [Li and Russell, 2013], FACTORIE [McCal-
lum et al., 2009], PyMC [Salvatier et al., 2016], and Edward [Tran et al., 2016] use
this pattern.

4.7.2 Inference

The rejection, importance, and Metropolis-Hastings algorithms described in Sec-
tion 4.4.2 are implemented in the same spirit as those described by Ścibior et al.
[2015] and Zinkov and Shan [2016] in that each is encoded as a probabilistic
program. When it can be done, it tends to be very easy to implement these al-
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gorithms in this fashion. However it cannot always be done, e.g. the case of
single-site Metropolis.

So-called single-site Metropolis methods have traditionally been implemented in
languages like Church and probabilistic-js according to the lightweight transfor-
mational compilation technique developed in Wingate et al. [2011]. The comon-
adic implementation mirrors this technique; it essentially replaces the ‘database
of randomness’ described in that implementation by directly annotating param-
eters in the AST. The direct lightweight transformational compilation technique
(or similar techniques that rely on dynamic typing, e.g. Bertschinger [2012]) re-
quires some additional legwork to get right in a purely-functional language like
Haskell. Earlier versions of Hakaru used it, but the implementation appeared
significantly more complex than does the cofree-encoded variant.

The comonadic inference implementation is representationally elegant, in that
we use ‘Free’ to encode models and ‘Cofree’ to perform inference on them given
a single underlying base functor. Similarly, the cofree encoding allows us to
perform ‘interactive’ inference, in that we can step through an execution trace
of a probabilistic program and examine, perturb, evaluate it however we might
want. Similar interactive capabilities are also available in Venture [Mansinghka
et al., 2014], which lets users interact with execution traces directly. But the
ability to represent and manipulate execution traces as first-class objects in a
minimal embedded language is noteworthy, and a useful feature.

Kiselyov [2016] noted that the lightweight transformational compilation tech-
nique of Wingate et al. [2011] can encounter problems in some cases, observ-
ing that (intuitively) semantic-preserving transformations can seriously change
a program’s behaviour. The author points out an example in which there is a
collision when looking up names following a conditional branch of the program.
It is worth noting that by storing a node’s history on-site in the cofree encod-
ing, we completely avoid this problem since collisions are ruled out structurally.
Kiselyov [2016] also proposed a structural solution to the name collision prob-
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lem, but not one that involved a cofree encoding.

As for performance, the comonadic inference as implemented here is somewhat
slow by any metric. It remains to be seen how performance can be improved,
but we assert this out of scope for this thesis. Storing the history of each node
on-site is likely needlessly costly and results in some unnecessary allocation; on
a semantic level, it also mixes up the notions of state and identity (why, after
all, should a single execution trace know anything about traces that preceded
it?). The implementation can likely be improved by accumulating histories in
another data structure. There is likely some low-hanging fruit around strictness
and PRNG management as well.

It is also worth mentioning that there has been a flurry of recent work around the
use of particleMCMCalgorithms [Andrieu et al., 2010] and variants in probabilis-
tic programming. We don’t deal with these in this thesis, but refer in particular
to work by Wood et al. [2014], Goodman and Stuhlmüller [2014], Ścibior et al.
[2015], and Ścibior et al. [2017] as noteworthy research in the area.

4.8 Conclusion

In this chapter we used a free monad encoding to deeply-embed a probabilis-
tic programming language in Haskell. Unlike the shallowly-embedded language
based on the Giry monad from Chapter 3 or the sampling function-based lan-
guage based on the samplingmonad, the freemonad allows us towrite structured
probabilistic programs that are amenable to a greater degree of interpretation.

We demonstrated that the semantics of the Giry and sampling monads could be
grafted onto the free monad-encoded language via simple monadic interpreters,
and that we were able to transform a free monad-encoded program into a cofree
comonad-encoded execution trace. We used the same limited and reusable prob-
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abilistic instruction set to parameterize each, delegating control flow to the cor-
responding higher-kinded recursive types, and demonstrated how we can do
MCMC over these execution traces.

The next chapter changes pace, moving away from deep embeddings and onto
a shallowly-embedded language useful for describing strategies for performing
MCMC.
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Chapter 5

Declarative Markov Chains

The secret of success in battle lies
often not so much in the use of
one’s own strength but in the
exploitation of the other side’s
weaknesses.

John Christopher

5.1 Abstract and Contributions

This chapter develops a shallowly-embedded language for dealing with another
important component in applied Bayesian statistics: the Markov transition oper-

ators used in Markov Chain Monte Carlo. As in previous chapters, this language
is based on the monadic structure of these operators; in particular, they form a
state monad over an annotated parameter space.

After some motivating discussion, we briefly review the structure of Markov
transitions and describe how they can be represented using the state monad.
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We demonstrate that transition operators can be combined in a sound manner,
using a simple monadic language that requires a minimum of syntax. We re-
view several popular and efficient ‘primitive’ transition operators for MCMC:
those based on the reliable Metropolis-Hastings and slice sampling algorithms,
as well as gradient-exploiting transitions based on the Hamiltonian Monte Carlo
(HMC), Metropolis-adjusted Langevin diffusion (MALA), and No U-Turn Sam-
pler (NUTS) algorithms. Section 5.7 presents some simulations, demonstrating
that compound transition operators can be more effective than primitive transi-
tions on simple problems. We close the chapter by noting some simple extensions
to the framework.

The primary contributions of this chapter are:

• A novel technique for building custom transition operators for use in
Markov Chain Monte Carlo (MCMC). Markov transition operators can
be denoted by a particular instance of the state monad such that familiar
monadic combinators can be used to build composite transition operators
from a set of base, ‘known-good’ primitives.

• General-purposeHaskell implementations of theMH, slice sampling, HMC,
MALA, and NUTS algorithms.

5.2 Motivation

The motivation for this chapter is perhaps best led off with an anecdote from the
author, from a talk attended on the topic of measuring the efficacy of various
MCMC algorithms on an astrostatistics problem. The presenters had found that
the eminently-reliable Metropolis-Hastings and slice sampling algorithms had
been the most effective samplers on this problem, and couldn’t decide which al-
gorithm should be preferred. This author asked the question “have you thought

180



about interleaving a Metropolis transition with a slice sampling transition?”,
which was met with laughter from the presenters over the perceived difficulty
of the implementation.

Not so. The aim of this chapter is to demonstrate that a system for ‘interleaving’
transition operators in this fashion can be implemented as a borderline-trivial,
shallowly-embedded monadic language.

First, some brief background on MCMC. MCMC is a family of algorithms used
for approximating integrals. One is only ever interested in doing it at all because
a particular integral — typically an expectation over a posterior density function
— is difficult or impossible to evaluate analytically. MCMC is fundamentally
about exploiting the properties of Markov chains — stochastic processes which
wander over the parameter space of a problem and recover a sample of points
that can be used to approximate an integral. The reason Markov chains are used
in lieu of a suitably dense grid over some appropriate region of parameter space
is that they — unlike grids — scale well to higher dimensions. One constructs a
Markov chain such that its invariant or stationary distribution P ∗ is the distri-
bution being integrated over, ensuring that in the limiting case the chain visits
regions of the parameter space in proportion to their probability. This offloads
to probability theory the problem of selecting an appropriate grid of points for
doing approximate integration.

Markov chains are constructed by transition operators that obey the Markov
property: that the probability of transitioning to the ‘next’ location in parameter
space — conditional on the history of the chain — depends only on the current
location. In MCMCwe’re also interested in operators that satisfy the reversibility
property — that is, that the probability of being in state q0 and transitioning from
state q0 to q1 is the same as the probability of being in state q1 and transitioning
from state q1 to q0. A chain is characterized by a single transition operator T that
drives it from state to state, and for MCMC we want the stationary distribution
P ∗ of the chain to be the distribution we’re trying to approximate an integral
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over.

In practice, what matters is how fast the Markov chain can visit a sufficient num-
ber of representative points of parameter space, as a practitioner just wants to
evaluate an integral and get on with his or her life. For any given space, the
success of any chain depends entirely on the operator used (issues of starting
location and burn-in aside).

One of the major cottage industries in Bayesian research is inventing new tran-
sition operators to drive Markov chains used for MCMC. This has historically
been a fruitful endeavour, but it could potentially be aided by a practical way
to make existing transitions work together. Note that this is easy to do in the-
ory: consider transition operators T1, T2, . . . , Tn, each satisfying the Markov and
reversibility properties and each having a common stationary distribution P ∗.
Then composing these operators together by concatenation produces another
operator T1...n = T1T2 . . . Tn that is also reversible, obeys the Markov property,
and has stationary distribution P ∗. This concatenation can be defined as simply
performing one transition after the other; in the example above, a single T1...n
transition is accomplished by transitioning the state using T1 and then imme-
diately transitioning the resulting state via T2, continuing up to Tn. A Markov
chain can then be defined via the compound transition T1...n.

Moreover, this is not the only way that a Markov transition operator can be de-
fined in terms of others. Take the same Markov operators T1, T2, . . . , Tn, and
define the probability distribution PT over them such that transition Tk is asso-
ciated with probability pTk

. Then we can define the transition operator T ∗
1...n as

the operator that transitions a state according to PT . Again, this preserves all
the properties we’re interested in.

Note that by construction these methods of composition can be combined, and
indeed form a recursive grammar defined abstractly by the following BNF:
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transition ::= literal <primitive>

| concatT transition transition

| sampleT transition transition

It elegantly captures the properties we’re trying to express: a Markov transition
with stationary distribution P is either a literal (over some primitive transition
operator definition), a concatenation of two transitions, or a distribution over
transitions. All expressions in this language preserve both the Markov property
and the stationary distribution, and can be used to drive a Markov chain. As a
contrived example, we could define a moderately complex transition operator as
follows: with probability p0 sample a transition operator from the distribution
PT0 (defined abstractly over arbitrary other transitions) and with probability p1
choose the operator defined by concatenating the operators T1T2.

The result is a simple language for composing transition operators, and it has
an immediate potential benefit: it allows the construction of transition opera-
tors that balance exploratory sampling power with computational expense. For
example, we could construct a transition operator that with probability 0.9 per-
forms a computationally-inexpensive spherical Metropolis transition, and with
probability 0.1 performs a comparatively-demanding gradient-based transition,
such as that used by Hamiltonian Monte Carlo [Neal, 2011]. The resulting tran-
sition would occasionally make gradient-based jumps, but spend most of its time
making cheap moves based on a simple Gaussian proposal distribution. The de-
sirable properties of the resulting operator (stationary distribution-preserving,
reversibility, Markov) are preserved.

The motivation for this language is fruitfully compared with a similar problem
found in parallel computing research. A perennial dream in parallel computa-
tion is the development of a ‘sufficiently smart compiler’ that could automati-
cally parallelize algorithms across arbitrary compute units. But implementing a
sufficiently smart compiler is a notoriously difficult problem as achieving perfor-
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mance gains from parallelism can be a thorny matter in practice: aside from the
theoretical limitations on parallel computation governed by Amdahl’s Law [Am-
dahl, 1967], runtime or environment play a significant role in determining parallel
speedups. Parallelism is typically accomplished by invoking numerous threads
of control to execute smaller individual tasks independently, and coordinating
these threads requires some overhead. The coordination problem, however, is
usually dwarfed by environmental factors; memory access and transfer speeds in
shared-memory environments, network latency in distributed systems, etc. are
major bottlenecks to achieving parallel speedups in practice. Achieving speedups
from parallelism is thus often a matter of trial and error — highly dependent on
the algorithm being parallelized, and often subject to hard-to-estimate runtime
penalties [Kirk and Hwu, 2010, Marlow, 2013].

Inference in Bayesian statistics is afflicted by similar difficulties. Samplers that
work particularly well for some models may work poorly on others, and the pri-
mary time that this problem may be observed is during sampling itself. A ‘suf-
ficiently smart’ inference system — like the sufficiently smart parallelizing com-
piler — would automatically tailor efficient inference algorithms to any model.

As an intermediate step towards a sufficiently smart parallelizing compiler, the
Haskell community has advocated two main approaches for managing paral-
lel computation. The first is the use of a monad for deterministic parallelism,
in which lower-level details of parallelizing a computation are handled by im-
mutable primitives ‘under the hood’ [Marlow et al., 2011, Kuper et al., 2014].
The second is the use of evaluation strategies, whereby a user of the language
annotates how a function should be evaluated by means of certain strategy com-
binators [Trinder et al., 1998]. The strategy approach has the advantage of be-
ing composable and minimally invasive on the code being parallelized; primitive
strategies can be combined together to form more elaborate strategies, without
ever changing the sequential semantics of the program being evaluated. The
strategy system allows a programmer to distinguish what should be evaluated
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from how to evaluate it.

In the absence of a sufficiently smart inference system, an embedded language for
building custom Markov transition operators could be useful for much the same
reason. Customized transition operators that declare ‘how something should be
sampled’ can be built from familiar sampling primitives, while also being mini-
mally intrusive on the structure of the model under consideration.

The following sections illustrate an embedding for the simple language described
above. As the BNF suggests, this language is very simple — we can get a lot of
mileage out of the two abstract terms ‘concatT’ and ‘sampleT’ alone. But what’s
more is that unlike the free monad encoding developed in Chapter 4, we don’t
require a deep embedding for this language since we don’t need to examine the
structure of its expressions — we can get away without defining the above gram-
mar at all, instead exploiting existing functionality from our host language to
produce a shallow, monadic embedding.

5.3 The Structure of Markov Transitions

5.3.1 Markov Chains

It is worth saying something about the mathematical specification of Markov
transitions. This section provides theoretical justification for the deterministic
and random concatenation operations described in the previous section, mostly
following Geyer [2005].

The distribution of a transition operator T between points in a general state space
X is described by a Markov kernel. One takes a σ-algebra over X and considers
the measurable space (X,X ) — a Markov kernel P : X × X → [0, 1] then has
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the form:
P (x,A) = Pr(Xn+1 ∈ A |Xn = x) (5.1)

such that P (x, ·) is a probability measure for fixed x ∈ X and P (·, A) is a mea-
surable function for fixed A ∈ X . The distribution of any given transition from
x to some other point in the state space is thus established by the Markov kernel
P (x, ·), so that transitions T1, T2, . . . , Tn can be characterized probabilistically
by their respective Markov kernels P1, P2, . . . , Pn.

Markov kernels can be composed according to the rule:

(P1P2)(x,A) =

∫
P1(y, A)P2(x, dy). (5.2)

So here P1(·, A) is a measurable function being integrated against the probabil-
ity measure P2(x, ·). One can appeal to the conditional Fubini theorem [Apple-
baum, 2009] to establish that kernel composition is associative, viz. (P1P2)P3 =

P1(P2P3).

A Markov chain has a stationary distribution P ∗ if, for any kernel P , composition
with P ∗ results in P ∗. That is, that:

P ∗P = P ∗.

Here the transition with distribution P is said to ‘preserve the stationary dis-
tribution’ of the chain. From here we can establish both the deterministic and
random concatenation operations described in Section 5.2, each of which pre-
serves the stationary distribution as required. For deterministic concatenation,
i.e. the operation corresponding to ‘concatT’, if transitions T1, T2, . . . , Tn each
preserve the stationary distribution of a chain, then:

P ∗P1P2 · · ·Pn = (P ∗P1)P2 · · ·Pn (associativity)

= P ∗P2 · · ·Pn (stationary distribution)

= P ∗Pn (induction)

= P ∗.
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For random concatenation, i.e. the operation corresponding to ‘sampleT’, we
can show that transition operators are closed under convex combinations. That
is: for coefficients a1, . . . , an such that ai ≥ 0 and

∑n
i ai = 1, and transitions

T1, . . . , Tn, we have that:

P ∗

(
n∑
i

aiPi

)
=

n∑
i

aiP
∗Pi (distributivity)

=
n∑
i

aiP
∗ (stationary distribution)

=

(
n∑
i

ai

)
P ∗ (distributivity)

= P ∗. (convexity)

Since
∑n

i aiPi is simply the expected value of the probability distribution over
some Pi’s, we have that random concatenation also preserves the stationary dis-
tribution as required.

Note that we can take the approach from Chapter 3 and define kernels in terms
of measurable functions instead of measurable sets. Take (X,X ) a measurable
space and f : X → R a measurable function. We can translate the kernel in
Equation 5.1 into:

P (x, f) =

∫
fdPx

for some appropriate probability measure Px. Using a currying construction, we
can characterize its type via:

P : X → (X → R) → R.

Note that (X → R) → R was the type we used to encode the Giry monad as a
continuation. Generalizing the type of the continuation to another measurable
space (Y,Y), the type of the kernel can be rewritten as:

P : X → P(Y )
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for P the Giry functor.

The class of Markov kernels P : X → P(Y ) can thus be identified as the mor-
phisms of the so-called Kleisli category of the Giry monad, a fact noted by Panan-
gaden [1999]. Here the objects are the same as in Meas, the identity morphisms
are the Dirac morphisms δ : X → P(X), and composition is defined as in Equa-
tion 5.2.

We won’t need to actually deal with any integration in this chapter. We simply
use Markov kernels to denote ‘canonical’ probabilistic semantics for our transi-
tion operators in the same way that we used probability measures to denote se-
mantics for sampling functions. The point is that transition operators can safely
be composed in an associative way (using either deterministic or random con-
catenation) without invalidating any important probabilistic properties.

5.3.2 The State Monad

The primary tool we’ll use to embed this language is the state monad — a data
struture that can be used to denote stateful computation. Unlike probabilitymon-
ads — which are still probably considered somewhat exotic — the state monad is
a run-of-the-mill monad familiar to just about any Haskell programmer. It can
be defined as follows:

data State s a = State { run :: s -> (a, s) }

instance Functor (State s) where

fmap f (State g) = State (\s ->

let (a, s’) = g s

in (f a, s’))

instance Applicative (State s) where
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pure = return

(<*>) = ap

instance Monad (State s) where

return x = State (\s -> (x, s))

State g >>= f = State (\s ->

let (a, s’) = g s

in run (f a) s’)

It is easy to verify it satisfies the functor and monad laws. For functor, note that:

fmap id (State g)

= State (\s ->

let (a, s’) = g s

in (id a, s’))

= State (\s ->

let (a, s’) = g s

in (a, s’))

= State g

so that ‘fmap id = id’. We can also show that:

fmap (f . h) (State g)

= State (\s ->

let (a, s’) = g s

in ((f . h) a, s’))

= State (\s ->

let (a, s’) = g s

in (f (h a), s’))
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= fmap f (State (\s ->

let (a, s’) = g s

in (h a, s’)))

= fmap f (fmap h (State g))

so that ‘fmap (f . h) = fmap f . fmap h’, as required. We omit a treatment of the
monad laws here for brevity, but they can be verified in similar fashion (we will
prove a virtually identical analogue of them below).

In practice we don’t actually need to define the state monad machinery manually
as it’s a fundamental part of the Haskell ecosystem. We can just import ‘Con-
trol.Monad.Trans.State.Strict’ from the transformers library and have it at our
disposal. It comes with a number of useful convenience functions for working
with the underlying state.

The state monad and its importance can be illustrated simply by the following
functions that use it to add up the contents of a list:

increase :: Int -> State Int ()

increase x = modify (+ x)

statefulSum :: [Int] -> Int

statefulSum xs = execState (for xs increase) 0

The function ‘execState’ executes a stateful action by running the monad. The
‘increase’ function — which modifies some existing state by adding an amount
to it — is applied to each element of an input list using the ‘for’ combinator.
‘execState’ requires an initial state to work from, so we provide it with 0. The
‘modify’ function here is one that instances of the state monad get for free: it
simply examines the state and modifies it according to the provided function.
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The above example is more interesting than it looks. Consider the ‘increase’
function in particular: it modifies some state by adding a provided integer to it.
But note that it doesn’t ‘know’ what state it’s going to receive — it will work for
any provided state. Also, the type system restricts that the state must be of type
‘Int’, indicating that it can’t be passed (for example) a list of integers representing
the history of states received.

In other words, ‘increase’ describes a way to transition from an arbitrary point
in some state space to another, and the value that it transitions to does not de-
pend on the history of states that it has visited. It is exactly a Markov transition
operator. As mentioned in the previous section, ‘increase’ is an example of a so-
called Kleisli arrow for a given monad — a function of type a→ mb for monadm
where it is evident from the type alone that the input is a pure value, independent
of any history.

However, it’s not yet a transition operator that’s useful for MCMC — it has no
stationary distribution, nor is it reversible. To get there, we can reuse the sam-
pling function-based probability monad from Chapter 4 in order to make non-
deterministic transitions, layering a state monad transformer on top of it. The
‘StateT’ monad transformer is defined as follows:

newtype StateT s m a = StateT { runStateT :: s -> m (a, s) }

instance (Functor m) => Functor (StateT s m) where

fmap f (StateT g) = StateT (\s ->

let (a, s’) = g s

in (f a, s’))

instance (Functor m, Monad m) => Applicative (StateT s m) where

pure = return

(<*>) = ap
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instance (Functor m, Monad m) => Monad (StateT s m) where

return a = StateT (\s -> return (a, s))

m >>= k = StateT (\s -> do

(a, s’) <- runStateT m s

runStateT (k a) s’)

It operates exactly like the state monad described previously, except it can be
parameterized by anothermonad aswell. Define the following type for transition
operators, using the ‘StateT’ monad transformer over our existing probability
monad:

type Transition s m a = StateT s (Prob m) a

Recall that the sampling monad from Chapter 4 uses a primitive state monad
under-the-hood in order to handle the state of a PRNG. So here we’ve created a
monad transformer stack with three ‘layers’, each providing different function-
ality. From the top down, we have:

• An explicit state-passing layer denoted by ‘StateT s’ for some state of type
‘s’, allowing us to transition between points of some user-defined state
space.

• A probability monad layer denoted by ‘Prob m’, allowing us to make ran-
dom choices.

• A primitive state-passing layer denoted by the type ‘m’ that handles pass-
ing a PRNG.

Note that the transition operator monad – being a simple monad transformer
stack — satisfies the functor and monad laws so long as each of its layers does.
We will take as given that the primitive state monad at the bottom satisfies the
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monad laws and simply verify below that the monad laws hold for the topmost
state layer — the functor laws can be verified in the same manner we did for the
plain state monad.

For left-identity, we have:

return x >>= f

= StateT (\s -> do

(a, s’) <- runStateT (return x) s

runStateT (f a) s’)

= StateT (\s -> do

(a, s’) <- runStateT (StateT (\t -> return (x, t))) s

runStateT (f a) s’)

= StateT (\s -> do

(a, s’) <- return (x, s)

runStateT (f a) s’)

= StateT (\s -> runStateT (f x) s)

= StateT (runStateT (f x))

= f x

And right-identity follows similarly:

m >>= return

= StateT (\s -> do

(a, s’) <- runStateT m s

runStateT (return a) s’)
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= StateT (\s -> do

(a, s’) <- runStateT m s

runStateT (StateT (\t -> return (a, t))) s’)

= StateT (\s -> do

(a, s’) <- runStateT m s

return (a, s’))

= StateT (\s -> runStateT m s)

= StateT (runStateT m)

= m

For associativity, note first that

(StateT f >>= g) >>= h

= StateT (\s -> do

(a, s’) <- runStateT (StateT f) s

runStateT (g a) s’) >>= h

= StateT (\s -> do

(a, s’) <- f s

runStateT (g a) s’) >>= h

= StateT (\s -> do

let i t = do

(b, t’) <- f t

runStateT (g b) t’

(a, s’) <- i s

runStateT (h a) s’)
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= StateT (\s -> do

(a, s’) <- f s

(b, s’’) <- runStateT (g a) s’

runStateT (h b) s’’)

and then that

StateT f >>= \x -> (g x >>= h)

= StateT f >>= \x -> StateT (\s -> do

(a, s’) <- runStateT (g x) s

runStateT (h a) s’)

= StateT (\s -> do

(a, s’) <- f s

runStateT (\x -> StateT (\t -> do

(b, t’) <- runStateT (g x) t

runStateT (h b) t’) a) s’)

= StateT (\s -> do

(a, s’) <- f s

runStateT (StateT (\t -> do

(b, t’) <- runStateT (g a) t

runStateT (h b) t’)) s’)

= StateT (\s -> do

(a, s’) <- f s

(b, s’’) <- runStateT (g a) s’

runStateT (h b) s’’)

so that evaluating in any order yields the same result, as required.
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5.4 A Shallowly Embedded Language For Transitions

The ‘Transition’ type contains all the functionality required to characterize re-
versible Markov transition operators, as we’ll see in Section 5.5. Now what we’d
like to do is implement analogues for the ‘concatT’ and ‘sampleT’ terms defined
in Section 5.2. These will provide the ability to compose transition operators
together, either by straight concatenation or by sampling them from some dis-
tribution.

The structure of the state monad used to implement these transition operators is
such that existing functionality in Haskell makes this embedded language em-
barrassingly easy to implement.

To start, deterministic concatenation of operators is provided by the monadic
‘>>’ operator that all instances of Monad get automatically. It is defined as
follows:

(>>) :: Monad m => m a -> m b -> m b

m >> k = m >>= const k

Since we will only be concerned about chains over a single parameter space, we
can specialize the types to define ‘concatT’ as an alias, as below:

concatT

:: Monad m

=> Transition s m a

-> Transition s m a

-> Transition s m a

concatT t0 t1 = t0 >> t1

We can provide another convenience function for concatenating lists of transi-
tion operators by simply folding the list together with >>:
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concatAll

:: Monad m

=> [Transition s m a]

-> Transition s m a

concatAll = foldl1 (>>)

Defining the ‘sampleT’ analogue is not muchmore difficult. Here wemake use of
the probability monad encoded in the ‘Transition’ type to make a random choice,
using the ‘lift’ function that allows us to work with monad transformer stacks:

sampleT

:: PrimMonad m

=> Transition s m a

-> Transition s m a

-> Transition s m a

sampleT t0 t1 = do

heads <- lift (bernoulli 0.5)

if heads

then t0

else t1

It’s important to note that, for primitive transition operators T0 and T1, a tran-
sition operator T0,1 built using ‘sampleT’ is not always one of T0 or T1. Rather,
every time T0,1 is used to transition a state it will randomly choose one of T0 or
T1 to do the dirty work. A resulting Markov chain would be formally driven by
T0,1, but any sequence of ‘raw’ transitions used might look like

T0T0T1T0T1T1T1T0 . . .

We can create other convenience functions for composing transition operators
probabilistically. ‘oneOf’ uses one element from the provided list of transition
operators at random:
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oneOf

:: PrimMonad m

=> [Transition s m a]

-> Transition s m a

oneOf ts = do

j <- lift (uniformR (0, length ts - 1)

ts !! j

Here the ‘‼’ operator simply retrieves the value of a list at the provided index.

We can define ‘firstWithProb’ to use the first of two supplied transition operators
with probability p. This is just a generalization of ‘sampleT’ with an additional
argument for the success probability — note that ‘sampleT’ is ‘firstWithProb 0.5’:

firstWithProb

:: PrimMonad m

=> Double

-> Transition s m a

-> Transition s m a

-> Transition s m a

firstWithProb p t0 t1 = do

heads <- lift (bernoulli p)

if heads then t0 else t1

And finallywe can define the function ‘frequency’ to choose a transition operator
according to a supplied frequency distribution¹:

frequency

:: PrimMonad m

=> [(Int, Transition s m a)]

¹This idea and code is almost verbatim from the Haskell library quickcheck for randomized
property-based testing.
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-> Transition m a

frequency xs = lift (uniformR (1, tot)) >>= (‘pick‘ xs) where

tot = (sum . map fst) xs

pick n ((k, v):vs)

| n <= k = v

| otherwise = pick (n - k) vs

The ‘Transition’ type combinedwith the above functions for workingwith it con-
stitute another lightweight embedded DSL, and we can use it to create Markov
chains that sample from target functions that are proportional to probability den-
sities.

And that’s it. The above combinators are all that is needed for an embedded
language that allows us to build complex transition operators from a set of law-
abiding primitives.

The rest of this chapter illustrates this embedded language using a number of im-
plementations of primitive transitions, and is available on Github as the declar-
ative library. Implementations for the individual primitive transitions are also
available in themighty-metropolis, speedy-slice, hasty-hamiltonian, lazy-langevin,
and hnuts libraries respectively. In the following sections we’ll define our prim-
itive transition operators at a high level; for low-level details of the implementa-
tions, please see the respective libraries.

5.5 Primitive Transition Operators

In the case of the ‘Transition s m a’ type, the type system enforces the Markov
property by preventing us from ‘cheating’ and looking at the history of a chain.
But here the type system can only help us somuch: it can’t enforce similar invari-
ants about reversibility or stationarity. These properties are important if MCMC
is to work as expected.
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To be able to make some guarantees about the validity of the transitions express-
ible in the embedded language, we’d want to prohibit users from defining their
own primitive transitions, and instead insist that they build their custom transi-
tions from a fixed set of known primitives that we provide.

In the following sections we implement five popular and useful transition op-
erators that constitute a set of ‘known good’ primitives. Each is independently
reversible and stationary distribution-preserving, so we can guarantee that these
properties will be preserved for compound transitions created from them. We’ll
want to use these to sample from a space with probability proportional to some
target function. This is typically something proportional to the posterior density
of a conditioned probabilistic model, but the presentation is kept general in this
chapter.

5.5.1 A Concrete State Type

Up until now we’ve kept the type of our state space abstract, denoting it by ‘s’
in the type ‘Transition s m a’. To decrease type signature clutter we’ll make
this type concrete in the following implementations, instead just using a type
‘Transition m a’ for some concrete ‘s’.

We’ll restrict ourselves to running Markov chains over homogeneously-typed
spaces; that is, spaces that have the same type on each dimension. This includes
Rn or even Zn, for example, but disallows spaces like R × Z. Note that this
can be done — we’d just have to transition across dimensions in blocks — but
is unnecessary for the scope of this dissertation. This means that in all cases a
point in parameter space can be represented by an n-dimensional vector. The
simplest concrete type for our state space is thus ‘Vector a’ for some type ‘a’. In
practice, though, we’ll also want to cache a few more things in the state, rather
than just the parameter space position. We can do this without violating the
Markov property, however.
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To avoid repeating computation unnecessarily, we’ll cache the value of the target
function at themost recent point that we’ve visited in parameter space. We’ll also
include with the state a supplementary store of information needed by various
primitive transitions that again only depend on the latest state of the chain —
these are the typical ‘tuning parameters’ used by many MCMC algorithms.

More controversially, we’ll also cache the target function itself. This is benign
so long as we’re disciplined when it comes to using it, and in fact, none of the
primitives described in this section actually modify it — using it only as a read-
only value. In some applications it can however be useful to change the state of
the target function; an example of this is illustrated later, in Section 5.8.

The target function is encoded by the following type:

data Target a = Target {

logObjective :: Vector a -> Double

, gradient :: Maybe (Vector a -> Vector a)

}

Notice first that the target is expected to be a log-target from a point in parameter
space to the reals. It is potentially accompanied by its gradient; this is not manda-
tory in general, but is required to use gradient-based transitions. The following
helper functions are useful for creating targets:

createTargetWithoutGradient :: (Vector a -> Double) -> Target a

createTargetWithoutGradient f = Target f Nothing

createTargetWithGradient

:: (Vector a -> Double)

-> (Vector a -> Vector a)

-> Target a

createTargetWithGradient f g = Target f (Just g)
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The concrete state of our chains becomes the following product type, called
‘Chain’:

data Chain a = Chain {

parameterSpacePosition :: Vector a

, objectiveFunction :: Target a

, objectiveValue :: Double

, optionalStore :: OptionalStore

}

We’ll also adapt the return type of the transition to be the most recently visited
point of the chain, leading us to the following transition type

type Transition m a = Transition (Chain a) (Prob m) (Vector a)

With these types in place we can define the following ‘mcmc’ function that traces
a Markov chain for n iterations according to a particular transition operator:

mcmc

:: Monad m

=> Int

-> Transition m a

-> Chain a

-> Gen (PrimState m)

-> m [Vector a]

mcmc n t o = sample (replicateM n t ‘evalStateT‘ o)

To illustrate its use from a user’s perspective, consider something proportional
to a simple 1D standard Gaussian log-density as the target. The following code
initializes a value of type ‘Chain Double’ at the point 0, from which we can run
a Markov chain:
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logTarget :: Double -> Double

logTarget x = negate (x ^ 2 / 2)

initialPosition :: Chain Double

initialPosition = Chain position target value empty where

position = V.fromList [0.0]

target = createTargetWithoutGradient logTarget

value = logObjective target position

We could then run a chain using an abstract transition operator called ‘trans’
using the ‘mcmc’ function:

> prng <- create

> mcmc 1000 trans initialPosition prng

In the following sections we’ll define some primitive transition operators that we
could use to take the place of the ‘trans’ function. We will simply describe the
primitive transitions here: for the corresponding code, see Appendix B.

Note that one effect of restricting the parameter space type to ‘Vector a’ is that
we exclude the use of ensemble samplers as primitives. This is by necessity, as a
transition operator for a single particle is incompatible with that of an ensemble.
This rules out useful algorithms for MCMC, such as the famous affine-invariant
ensemble sampler of Goodman and Weare [2010]. An existing Haskell imple-
mentation of this algorithm is available on Github as flat-mcmc [Tobin, 2012],
but we’re unable to make use of it here.

5.5.2 Metropolis-Hastings (MH)

Metropolis-Hastings [Metropolis et al., 1953, Hastings, 1970] remains the reliable
workhorse of MCMC as it is easy to implement and computationally inexpen-
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sive. But it does encounter various well-known drawbacks on some problems
— namely those where variables are highly correlated, creating narrow, twist-
ing regions of probability in parameter space that are difficult to move through
unless customized local proposals are used.

As a primitive transition operator for the declarative framework, the MH tran-
sition represents a safe baseline that one may wish to use ‘most of the time’,
possibly by composing it probabilistically with some more computationally ex-
pensive transition operator like HMC. It has a very standard implementation —
the current position of the chain is perturbed according to a proposal distribu-
tion, and the proposed move is accepted or rejected according to the standard
criterion.

The Metropolis-Hastings transition operator is represented in the sequel via the
following monadic function:

metropolisHastings :: PrimMonad m => Maybe Double -> Transition m Double

5.5.3 Slice Sampling

Slice sampling [Neal, 2003] is a simple and powerful method for doing MCMC.
It roughly works as an approximation to Gibbs sampling [Geman and Geman,
1984], making incremental local moves across one parameter at a time. However
it is less demanding than Gibbs sampling in that full conditional distributions are
not required. A slice sampling implementation iterates through each dimension
of the parameter space and perturbs it, creating a final transition across all di-
mensions. The algorithmmakes use of rejection sampling internally, in its ‘inner
loop’.

Slice sampling fits roughly the same role as the MH transition in the declarative
library: it is a computationally inexpensive workhorse that can be occasionally
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mixed with other, more expensive transitions.

The slice sampling transition operator is represented in the sequel via the follow-
ing monadic function:

slice :: PrimMonad m => Double -> Transition m Double

5.5.4 Hamiltonian Monte Carlo (HMC)

HamiltonianMonte Carlo (HMC) [Neal, 2011] orHybridMonte Carlo is a gradient-
basedmethod that seeks to avoid randomwalk behaviourwhilewandering through
parameter space. It is conceptually simple to understand and implement but can
be difficult to use in practice, as its performance is particularly sensitive to the
values of two tuning parameters. With good settings for these parameters HMC
is known to perform notably well [Girolami and Calderhead, 2011].

TheHMC transition operator is represented in the sequel via the followingmonadic
function:

hamiltonian :: PrimMonad m =>

Maybe Double -> Maybe Int -> Transition m Double

5.5.5 Metropolis-adjusted Langevin Diffusion (MALA)

The Metropolis-adjusted Langevin Diffusion [Girolami and Calderhead, 2011] is
a gradient-based MCMC algorithm in which the proposal process is a discretized
Langevin diffusion with drift. It is easy to use, requiring only a single tuning
parameter that is used to determine the magnitude of the proposal. It is also
relatively simple to implement.
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The MALA transition is more or less a drop-in replacement for HMC in the case
that one only wants to specify a single tuning parameter. Girolami and Calder-
head [2011] found comparable performance between the two algorithms, with
HMC slightly outperforming MALA on their test cases.

The MALA transition operator is represented in the sequel via the following
monadic function:

mala :: PrimMonad m => Maybe Double -> Transition m Double

5.5.6 No U-Turn Sampler (NUTS)

Hoffman and Gelman [2011] developed the No U-Turn Sampler (NUTS) as a way
to automatically find acceptable values for the tuning parameters of HMC. It is
an implementation of HMC that uses a number of heuristics to determine how
these parameters are to be set. NUTS is famously used as the backend for Stan
[Stan, 2013], and is also included in libraries like PyMC3 [Salvatier et al., 2016].

Hoffman and Gelman [2011] also specify some extensions to basic NUTS — such
as the incorporation of dual averaging [Nesterov, 2009] — that make use of a
burn-in period to help find good values for parameters. This is awkward to in-
corporate in our framework since transition operators must not make use of the
history of the chain, and so we can’t easily define transitions as taking place in
a burn-in phase or not. This extension is doable — it would require adding a
burn-in phase indicator to the ‘Chain’ type, but remains unimplemented here.

The NUTS transition is the most heavyweight of the primitive operators dis-
cussed here. It can perhaps be used sparingly as a supporting transition to more-
frequently-used MH or slice sampling transitions when good settings for HMC’s
tuning parameters are difficult to come up with.
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The NUTS transition operator is represented in the sequel via the following
monadic function:

nuts :: PrimMonad m => Transition m Double

5.6 Composite Transition Operators

Writing composite transitions is very simple, following the simple combinators
presented in Section 5.4. Consider a progressive Metropolis transition that de-
terministically iterates through several Metropolis transitions of increasing step
size; we simply map a ‘metropolisHastings’ transition-creating function over a
list of step sizes and concat the results:

mhProgressiveTransition :: PrimMonad m => Transition m Double

mhProgressiveTransition =

let sizes = [0.1, 0.5, 1.0, 2.0, 2.5]

in concatAll (fmap (metropolisHastings . Just) sizes)

Similarly we can create a progressive slice sampler that deterministically slice
samples with step sizes 0.5 and 1.0, and then randomly chooses another slice
sampler with step size 4.0 or 10.0:

sliceTransition :: PrimMonad m => Transition m Double

sliceTransition = do

slice 0.5

slice 1.0

oneOf [slice 4.0, slice 10.0]

We can create a relatively heavyweight transition operator that deterministically
concatenates three transitions together: the first being a Metropolis transition
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with probability 0.8 and aHMC transitionwith probability 0.2, and the remaining
two a slice sampling transition and NUTS transition respectively:

customTransition :: PrimMonad m => Transition m Double

customTransition = do

firstWithProb 0.8

(metropolisHastings (Just 3.0))

(hamiltonian (Just 0.05) (Just 20))

slice 3.0

nuts

And as a final example we can create a transition operator based on a distribution
over transitions; a Metropolis transition is chosen with probability 1/2, a slice
sampler with probability 2/5, and NUTS transition with probability 1/10:

randomTransition :: PrimMonad m => Transition m Double

randomTransition = frequency

[ (5, metropolisHastings (Just 1.5))

, (4, slice 1.0)

, (1, nuts)

]

These composite transitions are also composable. Consider this contrived one,
just for illustration:

probablyOverkill :: PrimMonad m => Transition m Double

probablyOverkill = oneOf [

mhProgressiveTransition

, sliceTransition

, randomTransition

, firstWithProb 0.6 customTransition (slice 0.1)

]
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In the following section we’ll demonstrate some of these transitions over a col-
lection of test targets.

5.7 Simulations

5.7.1 Overview

Here we’ll use a variety of low-dimensional popular test functions for optimiza-
tion and sampling in order to test-drive some transition operators; they each
have various interesting properties (for example correlated variables and dis-
parate modes of probability) and can be conveniently visualized. These are use-
ful for testing transitions because we’re not concerned about their stationary
distribution-preserving properties — those have already been established for the
primitive transitions we’re using, and we are assured that composite transitions
remainwell-behaved as well. By using a set of low-dimensional test functions we
can easily visualize a run of a given chain and roughly judge ‘how it has done’,
which is difficult to do in larger problems.

We’ll also use the effective sample size metric from R’s coda library [Plummer,
2015b] to roughly measure the efficiency of the various chains under different
transitions. But it will be easy to see that this metric — like others — can’t really
tell the whole story when it comes to MCMC, which is why visualizing a chain’s
trace can be useful.

A rigorous study of the merits of various composite transition operators is be-
yond the scope of this thesis, which proposes only that a novel language for
expressing such compound operators can be embedded in a suitable host. The
reason for this is that the search space of the problem is large: one would want to
develop a set of useful composite transitions and then characterize the classes of
targets for which each of them might be useful. Since we’re typically interested
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in sampling over a posterior, it is then another significant step to characterize
what kind of model and data correspond to an identified class of target.

Quantifying the tradeoff between computational cost and exploratory power for
any given transition operator also requires serious preparation and effort; the
implementations of the primitive transitions would each have to be carefully op-
timized, and careful attention would need to be applied to benchmarks to ensure
that they really measured the performance of relevant parts of the transitions
(rather than, say, the speed of memory allocation or access to the disk).

What is useful here is to merely demonstrate that a given compound transition
can be useful on a given problem when compared with primitive transitions.

5.7.2 Target Densities

To test the various transition operatorswe’ll use four simple yet somewhat patho-
logical targets mostly gathered from a Wikipedia collection of functions com-
monly used to test optimization algorithms [Wikipedia, 2015].

The Rosenbrock density

The first is the two-dimensional Rosenbrock density, defined as follows:

f(x, y) = exp{−100(y − x2)2 − (1− x)2}. (5.3)

The Rosenbrock density is anisotropic or ‘banana-shaped’, containing long, nar-
row, twisting canyons of probability about a mode (see Figure 5.1). It was notably
used by Goodman and Weare [2010] to test their AIEMCMC sampler, due to the
strong correlation between its variables. We can wrap the log-Rosenbrock den-
sity up as a ‘Target’ as follows:
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rosenbrock :: Target Double

rosenbrock = createTargetWithGradient lRosenbrock glRosenbrock where

lRosenbrock :: Vector Double -> Double

lRosenbrock xs =

let [x, y] = V.toList xs

in (-1) * (5 * (y - x ^ 2) ^ 2 + 0.05 * (1 - x) ^ 2)

glRosenbrock :: Vector Double -> Vector Double

glRosenbrock xs =

let [x, y] = V.toList xs

dx = 20 * x * (y - x ^ 2) + 0.1 * (1 - x)

dy = -10 * (y - x ^ 2)

in V.fromList [dx, dy]

Note that our log-target only needs to be proportional to the actual log-density
of interest, so we’ve elided a factor of 20 in the code when compared to Equation
5.3.

The Himmelblau density

The second function is the Himmelblau density, defined by

f(x, y) = exp{−((x2 + y − 11)2 + (x+ y2 − 7)2)}.

The Himmelblau density contains four distinct regions of probability, two of
which are closer together than the others (see Figure 5.2). It can be encoded
as follows:

himmelblau :: Target Double

himmelblau = createTargetWithGradient lHimmelblau glHimmelblau where

lHimmelblau :: Vector Double -> Double

lHimmelblau xs =
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Figure 5.1: Contours of the Rosenbrock and log-Rosenbrock densities. The density is

anisotropic — most of the probability is concentrated along a skinny, banana-shaped

canyon.

let [x, y] = V.toList xs

in (-1) * ((x * x + y - 11) ^ 2 + (x + y * y - 7) ^ 2)

glHimmelblau :: Vector Double -> Vector Double

glHimmelblau xs =

let [x, y] = V.toList xs

quadFactor0 = x * x + y - 11

quadFactor1 = x + y * y - 7

dx = (-2) * (2 * quadFactor0 * x + quadFactor1)

dy = (-2) * (quadFactor0 + 2 * quadFactor1 * y)

in V.fromList [dx, dy]
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Figure 5.2: Contours of the Himmelblau and log-Himmelblau densities. The density has four

distinct modes of probability that are well-separated from each other.

The Beale density

The third is the Beale density, defined by

f(x, y) = exp
{
−((1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2)

}
.

The Beale density is particularly tricky; it contains two canyons of probability,
one which contains significantly more probability than the other (see Figure 5.3).
We can write it in Haskell as:

beale = createTargetWithGradient lBeale glBeale where

lBeale :: Vector Double -> Double

lBeale xs
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| and [x >= -4.5, x <= 4.5, y >= -4.5, y <= 4.5]

= negate ((1.5 - x + x * y) ^ 2

+ (2.25 - x + x * y ^ 2) ^ 2

+ (2.625 - x + x * y ^ 3) ^ 2)

| otherwise = - (1 / 0)

where

[x, y] = V.toList xs

glBeale :: Vector Double -> Vector Double

glBeale xs =

let [x, y] = V.toList xs

dx = negate (2 * (1.5 - x + x * y) * ((-1) + y)

+ 2.25 * 2 * (2.25 - x + x * y ^ 2) * ((-1) + y ^ 2)

+ 2.625 * 2 * (2.2625 - x + x * y ^ 3) * ((-1) + y ^ 3))

dy = negate (2 * (1.5 - x + x * y) * x

+ 2 * (2.25 - x + x * y ^ 2) * 2 * x * y

+ 2 * (2.625 - x + x * y ^ 3) * 3 * x * y ^ 2)

in V.fromList [dx, dy]

The BNN density

Finally there is the BNN density, defined as

f(x, y) = exp
{
−1

2
(x2y2 + x2 + y2 − 8x− 8y)

}
.

It contains two large mounds of probability over a correlated parameter space
(see Figure 5.4), and has the following encoding:

bnn :: Target Double

bnn = createTargetWithGradient lBnn glBnn where

lBnn :: Vector Double -> Double
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Figure 5.3: Contours of the Beale and log-Beale densities. The density has two distinct modes

of probability, each bending sharply along two asymptotes.

lBnn xs =

let [x, y] = V.toList xs

in -0.5 * (x ^ 2 * y ^ 2 + x ^ 2 + y ^ 2 - 8 * x - 8 * y)

glBnn :: Vector Double -> Vector Double

glBnn xs =

let [x, y] = V.toList xs

dx = -0.5 * (2 * x * y * y + 2 * x - 8)

dy = -0.5 * (2 * x * x * y + 2 * y - 8)

in V.fromList [dx, dy]

The BNN density has the most interesting namesake: is named as such because
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the author found it somewhere years ago, defined some Haskell code to work
with it under the nondescriptive name ‘bnn’, and years later forgot both where
he had found it and what it was supposed to represent. If you happen to know
who to credit for it, please don’t hesitate to share.

It’s worth noting that while we’ve manually calculated the gradients for the tar-
gets in the examples above, we could have equally used an automatic differenti-
ation library (for example Kmett [2010]) to calculate these for us.
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Figure 5.4: Contours of the BNN and log-BNN densities. The density has two large modes of

probability over a correlated parameter space.
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5.7.3 Configuration

We’ll use six transition operators for running chains on these test targets, assem-
bled more or less at random. The first are three primitive operators correspond-
ing to basic MH, HMC, and NUTS transitions where the MH and HMC step sizes
are set to 1 and 0.05 respectively, and the HMC leapfrog-steps parameter is set to
10. The second three are composite transitions corresponding to the ‘mhProgres-
siveTransition’, ‘customTransition’, and ‘randomTransition’ operators defined in
Section 5.6. We can use the following Haskell function to drive the chains — each
of which is capped at approximately 10000 total primitive transitions in order to
keep the total computation constant. Also note that same random seed is used
for each chain, and each is also initialized at the point (1, 1).

tracer

:: PrimMonad m

=> [(String, Int, Chain Double, Transition m Double)]

tracer =

[ (sl ++ ”-” ++ cl, n, chain, trans)

| (cl, chain) <- chains

, (sl, n, trans) <- transitions

]

where

transitions = [

(”mh” , 10000, mhBaseTransition)

, (”hmc”, 10000, hmcBaseTransition)

, (”nuts”, 10000, nutsBaseTransition)

, (”mh-prog”, 2000, mhProgressiveTransition)

, (”custom”, 3333, customTransition)

, (”random”, 10000, randomTransition)

]

chains = [

(”rosenbrock”, rosenbrockChain)
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, (”beale”, bealeChain)

, (”himmelblau”, himmelblauChain)

, (”bnn”, bnnChain)

]

To run the chains assembled in ‘tracer’ we just map a function across them, pair-
ing each target with each transition and executing the transition for the specified
number of iterations.

5.7.4 Results

The four target functions and the six transitions used to sample from them re-
sult in 24 total chains, each of which presents some useful information. The
floor-truncated effective sample sizes (ESS) for each chain (as reported by coda’s
‘effectiveSize’ function) is summarized in Table 5.5.

We thus have two metrics to evaluate the chains on: an informal visual measure
of howwell the chain appears to have traversed the space, and an ESS calculation
that attempts to measure the efficiency of the chain. The ESS performance is a
mixed-bag, providing some useful information in places but failing to capture
important information about the chains’ performance.

The traces over the Rosenbrock are displayed in Figure 5.6. They all appear to
capture most of the mass of the distribution, but can be distinguished by how
well they traverse into the tails. The HMC transition performs particularly well
here, while the MH transition operator has the most difficulty moving into low-
probability regions of the space. It’s worth noting that the ‘random’ and ‘cus-
tom’ compound transitions appear to have performed comparably well to the
NUTS transition. This is not surprising for ‘custom’ — which performs a primi-
tive NUTS transition on every iteration — but the ‘random’ strategy only uses a
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gradient calculation with probability 0.1, opting for MH or slice transitions oth-
erwise. In terms of ESS, the NUTS and ‘custom’ transitions dominate, with MH
also performing strongly.

The chains all appear to cover the high-probability areas of the BNN density well,
with the MH, ‘random’, and ‘custom’ transitions possibly eking out the com-
petition. However the ‘custom’ and ‘random’ operators yield the highest ESS,
followed by MH and ‘mh-progressive’. It’s interesting that the solely gradient-
based proposals perform worst in terms of ESS, whereas the ‘random’ and ‘cus-
tom’ operators — which also make use of a gradient-based primitive transition,
either certainly or with some probability — are buoyed. It’s difficult to tell if this
is the primitive slice transition speaking, however.

Things are more interesting on the Beale density, in which two of the primitive
operators — HMC and NUTS — completely fail to jump into to the secondary
area of high probability. The other transitions all seem to perform comparably.
The HMC and NUTS chains report high ESS numbers despite failing to locate an
appreciable area of probability; the other chains all perform comparable to each
other.

Finally there is the Himmelblau density containing four distinct and disparate
modes of probability. Here, the ‘custom’ transition is the only one that suc-
cessfully finds more than one mode; the rest remain stuck in a single mode (not
always the same mode) and stay there for the course of the trace. The ESS figures
can be misleading with respect to their performance: the ‘custom’ transition has
the lowest ESS by far, while all the others report ESS numbers far in excess of
it. HMC in particular reports impossibly high numbers (far in excess of the trace
size).

Again, the purpose of these simulations was to simply illustrate a mix of transi-
tion operators and look at how they performed. But it seems that ‘custom’ transi-
tion indeed performed admirably throughout. It consists of a random choice be-
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tween aMetropolis andHamiltonian transition (strongly favoring theMetropolis
transition), followed by a deterministic sequence of a slice sample and a NUTS
transition.

By blending a number of strong transitions together it seems like it may be pos-
sible to hedge one’s sampling risk, though more careful study would be required
to quantify this in any serious way.

5.8 Extensions

5.8.1 Annealing

Recall from Section 5.5.1 that the target function we’re sampling from is included
in the ‘Chain a’ type that represents the state of our Markov chain. This has until
now been technically unnecessarily as we could have provided the target as read-
only information (using, say, the reader monad, not discussed here).

It’s also possible to manipulate the target function in order to propose useful
transitions. This must be done carefully, as recklessly altering the target func-
tion obviously changes the distribution being sampled (consider replacing the
log-objective function with ‘const 0’, for example). But with disciplined use it
allows one to incorporate, for example, an annealing schedule that warps the tar-
get according to some temperature. This can make it easier for a Markov chain
to visit some distant region of probability that it would normally have difficulty
transitioning to. Annealing allows one to ‘flatten’ or ‘stretch’ the target distri-
bution in order to make it easier to move about in.

We can implement a function that takes a base transition operator and uses it to
transition the state over some annealed space, by manipulating the target func-
tion cached in the state. Such a ‘transition operator transformer’ can be defined
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as follows:

anneal

:: PrimMonad m

=> Double

-> Transition m Double

-> Transition m Double

anneal invTemp baseTransition

| invTemp < 0 = error ”anneal: invalid temperture”

| otherwise = do

originalTarget <- gets objectiveFunction

let annealedTarget = annealer invTemp originalTarget

modify (useTarget annealedTarget)

baseTransition

modify (useTarget originalTarget)

gets parameterSpacePosition

annealer :: Double -> Target Double -> Target Double

annealer invTemp target = Target annealedL annealedG where

annealedL xs = invTemp * logObjective target xs

annealedG =

case gradient target of

Nothing -> Nothing

Just g -> Just (V.map (* invTemp) . g)

useTarget :: Target a -> Chain a -> Chain a

useTarget newTarget (Chain current _ _ store) =

Chain current newTarget (logObjective newTarget current) store

An annealed transition operator is defined by swapping in the annealed target,
performing the base transition on the annealed space, and then swapping the
original target back in.

221



The ‘anneal’ combinator allows us to write transition operators that operate one
or more times in the annealed space. The following operator reuses the ‘ran-
domTransition’ operator from earlier in the chapter, setting it to an annealing
schedule based on the provided inverse temperatures:

annealingTransition :: PrimMonad m => Transition m Double

annealingTransition = do

anneal 0.70 randomTransition

anneal 0.05 randomTransition

anneal 0.05 randomTransition

anneal 0.70 randomTransition

randomTransition

The ‘annealingTransition’ performs four ‘randomTransitions’ on the annealed
space before executing a fifth on the original space.

The resulting transition operator performs well on the Himmelblau density from
before; on a trace of 2000 iterations it finds all four regions of probability, dis-
played in Figure 5.10.

5.8.2 Coupled Chains and Tempering

The structure of our transition operator type is also amenable to MCMC tech-
niques that rely on coupled chains, such as parallel tempering [Neal, 1996]. We
don’t explore this topic any further, but note that the type of transition over
coupled chains is easy to express:

type CoupledTransition m a =

StateT (Chain a, Chain a) (Prob m) (Vector a)

Indeed for n coupled chains this could be replaced by:
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type CoupledTransition m a = StateT [Chain a] (Prob m) (Vector a)

5.9 Summary and Comparison to Other Work

A declarative-style language is not a full probabilistic programming language,
with support for denoting models, sampling from them, and so on. It is a simple
embedded language for building Markov transition operators in a type-safe fash-
ion, such that the resulting transitions can be used to drive a Markov chain over
a log-density function. The means by which that log-density function is gotten
is kept abstract, such that we can treat it as being supplied by some arbitrary
frontend. declarative can then be used to customize how inference is performed
in the backend.

A similar feature for authoring custom transitions exists in PyMC3 [Salvatier
et al., 2016] under a system of ‘step methods’. As is typical in Python, this sys-
tem is implemented using a class called MCMC. An immediate advantage of the
present implementation by virtue of being embedded in Haskell is that custom
transition operators are stitched together in a way that gets checked at compile
time. This may seem academic (when do transition operators get that unwieldy)
but being able to check transitions at compile time is useful as a development
aid. If custom transitions in declarative pass a typechecker, they at least ‘work’
in a weak sense, saving the researcher the hassle of actually running his or her
Markov chain to spot the error.

Ścibior et al. [2017] discussed a similar, in-development system for denoting and
manipulating transitions such that they can be used as simple building blocks
towards arbitrarily more complex ones. The described system is more ambi-
tious in scope than that presented here. We focus on a language for building
transition operators, while Ścibior et al. [2017] seeks to mix and match entire in-
ference algorithms under a formalized denotational semantics. Narayanan and
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Shan [2014] developed a combinator library for MCMC sampling that is similar
in scope to declarative, though the extent of its features is not clear.

5.10 Conclusion

The monadic language presented here falls out naturally from characterizing
Markov transitions as values with type in the state monad. The resulting combi-
nators are extraordinarily easy to implement — the only remotely tricky part is
composing operators by mixing, which requires randomness from an underlying
probability monad.

A language for mixing and matching transition operators in this fashion is de-
sirable even as a low-cost way to explore the characteristics of various MCMC
algorithms on targets of one’s choice. One can start with a composite transition
consisting of various strong primitive transitions (in order to ‘hedge operator
risk’) and then refine it to some more concise operator for the problem via trial
and error. The embedded language makes it trivial to explore alternate transition
operators at almost no cost.

There is a large expanse here for future work: adding new primitive transition
operators, characterizing scenarios where specific compound transition opera-
tors could prove useful, and so on. It would be particularly desirable to find a
kind of ‘killer app’ for this kind of work, i.e. a case in which some compound
transition built from flexible primitives soundly beats any primitive transition
on its own.

An expanded version of this work including support for both continuous and
discrete parameterswas implemented towards an open-source inference backend
for the (now hibernating) Baysig project, a standalone Haskell-inspired language
with similar aims to BUGS or Stan but focusing on increased expressiveness.
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A major avenue of future work would be to use this language as a backend onto
an embedded probabilistic programming language like that developed in Chapter
4. Since the presentation here has been kept general, there is no technical hurdle
to doing this: given a free monad-captured AST, we could write an interpreter
that evaluates a posterior when provided concrete values for the parameters.
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Label ESS(x) ESS(y)

mh-rosenbrock 104 91
mh-progressive-rosenbrock 16 11
hmc-rosenbrock 14 16
nuts-rosenbrock 285 500
custom-rosenbrock 260 261
random-rosenbrock 57 33

mh-himmelblau 306 286
mh-progressive-himmelblau 799 389
hmc-himmelblau 16678 41450
nuts-himmelblau 5657 3478
custom-himmelblau 4 9
random-himmelblau 2572 3267

mh-beale 12 47
mh-progressive-beale 26 60
hmc-beale 489 663
nuts-beale 437 749
custom-beale 31 58
random-beale 21 64

mh-bnn 115 115
mh-progressive-bnn 126 111
hmc-bnn 45 39
nuts-bnn 52 54
custom-bnn 197 234
random-bnn 298 295

Figure 5.5: Floor-truncated effective sample size (ESS) by coordinate for chains driven by

various transition operators over the Rosenbrock, Himmelblau, Beale, and BNN densities.

226



Figure 5.6: Traces of Markov chains over the log-Rosenbrock density. Each trace was taken

for a total of 10000 primitive transitions, so the ‘mh-progressive’ and ‘custom’ traces contain

less points (2000 and 3333 respectively).
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Figure 5.7: Traces of Markov chains over the log-BNN density. Each trace was taken for a

total of 10000 primitive transitions, so the ‘mh-progressive’ and ‘custom’ traces contain less

points (2000 and 3333 respectively).
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Figure 5.8: Traces of Markov chains over the log-Beale density. Each trace was taken for

a total of 10000 primitive transitions, so the ‘mh-progressive’ and ‘custom’ traces contain

less points (2000 and 3333 respectively). Note that the pure gradient-based algorithms fail

to locate the topmost mode of probability.
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Figure 5.9: Traces of Markov chains over the log-Himmelblau density. Each trace was taken

for a total of 10000 primitive transitions, so the ‘mh-progressive’ and ‘custom’ traces contain

less points (2000 and 3333 respectively). Note that all but one of the algorithms fail to find

more than one mode of probability, with the ‘custom’ transition alone locating three.
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Figure 5.10: A trace of 2000 iterations of the annealingTransition operator on the log-

Himmelblau density. Note that it successfully finds all four modes of probability.
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Chapter 6

Conclusion

This dissertation has supported the thesis that novel and useful domain-specific
languages for solving problems in Bayesian statistics can be embedded in statically-
typed, purely-functional programming languages.

In this chapter we’ll summarize the primary contributions of the dissertation and
demonstrate that they defend the thesis.

6.1 Representing Probability Distributions

Chapter 3 provided a large tour of the Giry monad, and how it can be imple-
mented as a shallowly-embedded DSL for integration.

We formally characterized the functor, applicative, and monadic structure of the
Giry monad using probabilistic semantics. In particular, the functorial structure
was shown to encapsulate the probabilistic concept of pushforward measure,
while the applicative structure was shown to encode product measure and inde-
pendence of measurable functions.
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We then implemented the Giry monad as a shallowly-embedded DSL and charac-
terized the implementation via a restricted continuation monad. Measures were
represented in the embedded language as integration procedures. We demon-
strated various functions for building, manipulating, and queryingmeasures (with
special note to themeasure convolution, moment/cumulant-generating function,
and cumulative distribution function queries), but noted that the measure repre-
sentation was too computationally demanding to be useful in practice.

6.2 Representing Structured Probabilistic Models

Chapter 4 presented a novel and useful way to preserve the structure of a proba-
bilistic model. We detailed a procedure by which a typed, monadic probabilistic
programming language can be deeply-embedded in a statically-typed functional
host by exploiting the properties of the free monad over a probabilistic base func-
tor.

We then presented a a comonadicMCMCalgorithm that used the cofree comonad
to represent execution traces of probabilistic programs. The free applicative was
also demonstrated to be useful for encoding conditional independence statically.

6.3 Declarative Markov Chains

Chapter 5 presented a novel and useful shallowly-embedded language for build-
ingMarkov transition operators. Markov transition operatorswere demonstrated
to be composable either by deterministic concatenation or by probabilistic mix-
ing (or combinations of the two), and a simple grammar was presented that de-
scribed how complex transition operators could be built from primitive ones via
either of these operations.
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Wedemonstrated that the grammar could be implemented as a shallowly-embedded
language based on monadic combinators, using a state monad transformer over
a probability monad. We then presented implementations of a number of pop-
ular primitive transition operators in Haskell and used them to build a handful
of composite operators, which were then demonstrated in Markov chains over a
number of example spaces.

We also demonstrated that the language can be extended to support other pop-
ular MCMC methods, such as annealing and tempering.

6.4 Commentary and Future Work

The work contained in this dissertation emphasizes the themes of composition,
abstraction, and structure — important concepts in statically-typed purely func-
tional languages. Emphasis on these ideas naturally leads to the construction of
languages, which are nothing more than collections of composable terms bound
together by a structured grammar. This pattern of language engineering is a
fruitful way to build software in a number of domains, and statistics proves to be
one of them.

Embedding these simple languages dodges many of the hairier parts of imple-
menting programming languages and building compilers, since we can hijack
much of the more complicated and burdensome-to-implement features from our
host language. What’s more, one can often get pretty far just by using a shallow
embedding, in which the terms of the embedded language are defined directly by
their semantics. In only one case— to support a structured probabilistic program-
ming language — did we need to use a deep embedding that preserved abstract
syntax.

Most of the features developed throughout this dissertation rely on important
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underlying features of statically-typed, purely functional languages. Monads —
surely the prime driver of innovation — are difficult to express faithfully without
a strong type system and functional purity. Newcomers to languages like Haskell
are often put off by the apparent restrictions placed on them by monads, but
closer inspection quickly illustrates that they can often encapsulate some kind
of important law-preserving structure that can be exploited to implement some
desirable feature.

More generally, the idea of exploring and exploiting algebraic and categorical
structures like functors, monoids, applicatives, monads, and what have you is
surely relatively new to statistics and machine learning research. And yet there
seems to be a lot of low-hanging fruit in this area, both in terms of enabling
practical software implementations and by illuminating similarities or shared
structure with other well-understood problems.

There is surely an endless amount of work to explore where this dissertation
leaves off. Probabilistic programming is magnificent in the number of interesting
technical areas it touches, and modern approaches beyond the imperative, direct
style of the venerable BUGS software have really only been investigated within
the last ten years. There are few other domains that this author is aware of where
statistics, computer science, and pure mathematics are connected so intimately.

One of themost important avenues of future workwould also be tomake the var-
ious pieces of software developed during the course of this research production-

ready. These implementations necessarily have a proof-of-concept feel about
them; they are designed to explore new areas and possibilities, rather than to
immediately take the place of existing FORTRAN code. Considerable software
engineeringwould be required tomake these embedded languages synchronized,
user-friendly, featureful, and performant. But the beauty is that this can certainly
be done — once one knows the tricks, domain specific languages can be embed-
ded in languages like Haskell with much greater ease (and much fewer lines of
code) than it takes to implement a standalone language like Stan, for example.
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The BUGS and Stan projects were large pieces of institutional-supported soft-
ware involving multiple developers over many years, but it’s not hard to imag-
ine a finely-tuned set of open source packages embedded directly in a popular
programming language becoming a serious competitor in the future — there are
many attractive features of Haskell-like languages that simply don’t exist any-
where amongst the competition.
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Appendix A

Cofree Encoding and MCMC Code

Below is the full code for the comonadic inference algorithm. Note that it con-
sists of a few functions that must be pattern matched against every branch of an
underlying base functor; this makes the code somewhat repetitive, but it is iso-
lated well. It is further motivation for keeping the set of probabilistic primitives
minimal.

import Control.Comonad

import Control.Comonad.Cofree

import Control.Monad.Free

import Control.Monad.ST

import Data.Bits

import Data.Dynamic

import Data.Maybe

import Data.Monoid

import qualified Data.Vector as V

import Data.Void

import Data.Word

import qualified System.Random.MWC as MWC
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import System.Random.MWC.Probability (Prob)

import qualified System.Random.MWC.Probability as Prob

import Control.Monad.Trans.Cont

-- types ----------------------------------------------------------------------

data ModelF a r =

BernoulliF !Double (Bool -> r)

| BetaF !Double !Double (Double -> r)

| NormalF !Double !Double (Double -> r)

| DiracF a

deriving Functor

data Dist =

Bernoulli !Double

| Beta !Double !Double

| Normal !Double !Double

| Dirac

deriving (Eq, Show)

type Distribution a = Free (ModelF a)

type Model b = forall a. Distribution a b

type Terminating a = Distribution a Void

type Execution a = Cofree (ModelF a) Node

data Node = Node {

nodeScore :: !Double

, nodeValue :: !Dynamic
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, nodeSeed :: !MWC.Seed

, nodeHistory :: [Dynamic]

, nodeDist :: !Dist

} deriving Show

-- primitive terms ------------------------------------------------------------

beta :: Double -> Double -> Distribution a Double

beta a b = liftF (BetaF a b id)

bernoulli :: Double -> Distribution a Bool

bernoulli p = liftF (BernoulliF p id)

normal :: Double -> Double -> Distribution a Double

normal m s = liftF (NormalF m s id)

dirac :: a -> Distribution a b

dirac x = liftF (DiracF x)

-- additional distributions ---------------------------------------------------

geometric :: Double -> Distribution a Int

geometric p = loop where

loop = do

accept <- bernoulli p

if accept

then return 1

else fmap succ loop

uniform :: Distribution a Double

uniform = beta 1 1
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-- sampling -------------------------------------------------------------------

toSampler :: Distribution a a -> Prob IO a

toSampler = iterM $ \case

BernoulliF p f -> Prob.bernoulli p >>= f

BetaF a b f -> Prob.beta a b >>= f

NormalF m s f -> Prob.normal m s >>= f

DiracF x -> return x

simulate :: Prob IO a -> IO a

simulate model = MWC.withSystemRandom . MWC.asGenIO $ Prob.sample model

-- densities ------------------------------------------------------------------

logDensityBernoulli :: Double -> Bool -> Double

logDensityBernoulli p x

| p < 0 || p > 1 = log 0

| otherwise = b * log p + (1 - b) * log (1 - p)

where

b = if x then 1 else 0

logDensityBeta :: Double -> Double -> Double -> Double

logDensityBeta a b x

| x <= 0 || x >= 1 = log 0

| a < 0 || b < 0 = log 0

| otherwise = (a - 1) * log x + (b - 1) * log (1 - x)

logDensityNormal :: Double -> Double -> Double -> Double

logDensityNormal m s x

| s <= 0 = log 0

| otherwise = negate (log s) - (x - m) ^ 2 / (2 * s ^ 2)
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logDensityDirac :: Eq a => a -> a -> Double

logDensityDirac a x

| a == x = 0

| otherwise = negate (1 / 0)

-- execution: initializing ----------------------------------------------------

execute :: Typeable a => Terminating a -> Execution a

execute = executeGeneric (42, 108512)

executeGeneric

:: Typeable a => (Word32, Word32) -> Terminating a -> Execution a

executeGeneric = annotate where

annotate seeds term = case term of

Pure r -> absurd r

Free cons ->

let (nextSeeds, genGenerator) = xorshift seeds

seed = MWC.toSeed (V.singleton genGenerator)

ann = initialize seed cons

in ann :< fmap (annotate nextSeeds) cons

samplePurely

:: Typeable a => Prob (ST s) a -> Prob.Seed -> ST s (Dynamic, Prob.Seed)

samplePurely prog seed = do

prng <- MWC.restore seed

value <- MWC.asGenST (Prob.sample prog) prng

nodeSeed <- MWC.save prng

if seed == nodeSeed

then error ”a generator failed to step!”

else return (toDyn value, nodeSeed)

initialize :: Typeable a => MWC.Seed -> ModelF a b -> Node

242



initialize seed = \case

BernoulliF p _ -> runST $ do

(nodeValue, nodeSeed) <- samplePurely (Prob.bernoulli p) seed

let nodeScore = logDensityBernoulli p (unsafeFromDyn nodeValue)

nodeHistory = mempty

nodeDist = Bernoulli p

return Node {..}

BetaF a b _ -> runST $ do

(nodeValue, nodeSeed) <- samplePurely (Prob.beta a b) seed

let nodeScore = logDensityBeta a b (unsafeFromDyn nodeValue)

nodeHistory = mempty

nodeDist = Beta a b

return Node {..}

NormalF m s _ -> runST $ do

(nodeValue, nodeSeed) <- samplePurely (Prob.normal m s) seed

let nodeScore = logDensityNormal m s (unsafeFromDyn nodeValue)

nodeHistory = mempty

nodeDist = Normal m s

return Node {..}

DiracF a -> Node 0 (toDyn a) seed mempty Dirac

-- execution: scoring and running ---------------------------------------------

scoreWithModel

:: (Typeable a, Eq a)

=> Terminating a -> Dynamic

-> Double

scoreWithModel model x = case model of

Pure r -> absurd r
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Free cons -> case cons of

BernoulliF p _ -> logDensityBernoulli p (unsafeFromDyn x)

BetaF a b _ -> logDensityBeta a b (unsafeFromDyn x)

NormalF m s _ -> logDensityNormal m s (unsafeFromDyn x)

DiracF a -> logDensityDirac a (unsafeFromDyn x)

score :: Execution a -> Double

score = loop 0 where

loop !acc (Node {..} :< cons) = case cons of

BernoulliF _ k -> loop (acc + nodeScore) (k (unsafeFromDyn nodeValue))

BetaF _ _ k -> loop (acc + nodeScore) (k (unsafeFromDyn nodeValue))

NormalF _ _ k -> loop (acc + nodeScore) (k (unsafeFromDyn nodeValue))

DiracF _ -> acc

depth :: Execution a -> Int

depth = loop 0 where

loop !acc (Node {..} :< cons) = case cons of

BernoulliF _ k -> loop (succ acc) (k (unsafeFromDyn nodeValue))

BetaF _ _ k -> loop (succ acc) (k (unsafeFromDyn nodeValue))

NormalF _ _ k -> loop (succ acc) (k (unsafeFromDyn nodeValue))

DiracF _ -> succ acc

step :: Typeable a => Execution a -> Execution a

step prog@(Node {..} :< _) = stepWithInput nodeValue prog

stepWithInput :: Typeable a => Dynamic -> Execution a -> Execution a

stepWithInput value prog = case unwrap prog of

BernoulliF _ k -> k (unsafeFromDyn value)

BetaF _ _ k -> k (unsafeFromDyn value)

NormalF _ _ k -> k (unsafeFromDyn value)

DiracF _ -> prog
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run :: Typeable a => Execution a -> a

run prog = case unwrap prog of

DiracF a -> a

_ -> run (step prog)

runWithInput :: Typeable a => Dynamic -> Execution a -> a

runWithInput value = run . stepWithInput value

stepGenerators :: Functor f => Cofree f Node -> Cofree f Node

stepGenerators = extend stepGenerator

stepGenerator :: Cofree f Node -> Node

stepGenerator (Node {..} :< cons) = runST $ do

(_, nseed) <- samplePurely (Prob.beta 1 1) nodeSeed

return Node {nodeSeed = nseed, ..}

-- mcmc: perturb --------------------------------------------------------------

perturb :: Execution a -> Execution a

perturb = extend perturbNode

perturbNode :: Execution a -> Node

perturbNode (node@Node {..} :< cons) = case cons of

BernoulliF p _ -> runST $ do

(nvalue, nseed) <- samplePurely (Prob.bernoulli p) nodeSeed

let nscore = logDensityBernoulli p (unsafeFromDyn nvalue)

ndist = Bernoulli p

return $! Node nscore nvalue nseed nodeHistory ndist

BetaF a b _ -> runST $ do

(nvalue, nseed) <- samplePurely (Prob.beta a b) nodeSeed

let nscore = logDensityBeta a b (unsafeFromDyn nvalue)
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ndist = Beta a b

return $! Node nscore nvalue nseed nodeHistory ndist

NormalF m s _ -> runST $ do

(nvalue, nseed) <- samplePurely (Prob.normal m s) nodeSeed

let nscore = logDensityNormal m s (unsafeFromDyn nvalue)

ndist = Normal m s

return $! Node nscore nvalue nseed nodeHistory ndist

DiracF a -> node

-- mcmc: markov chain ---------------------------------------------------------

invert

:: (Eq a, Typeable a, Typeable b)

=> Int -> [a] -> Model b -> (b -> a -> Double)

-> Model (Execution b)

invert epochs obs prior ll = loop epochs (execute (prior >>= dirac)) where

loop n current

| n == 0 = return current

| otherwise = do

let proposal = perturb current

valueAtCurrent = run current

valueAtProposal = run proposal

currentLl = ll valueAtCurrent

proposalLl = ll valueAtProposal

currentContribution = sum (fmap currentLl obs)

proposalContribution = sum (fmap proposalLl obs)

currentScore = score current + currentContribution
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proposalScore = score proposal + proposalContribution

fw = negate (log (fromIntegral (depth current))) + score proposal

bw = negate (log (fromIntegral (depth proposal))) + score current

prob = moveProbability currentScore proposalScore bw fw

accept <- bernoulli prob

let next = if accept then proposal else stepGenerators current

loop (pred n) (snapshot next)

moveProbability :: Double -> Double -> Double -> Double -> Double

moveProbability current proposal bw fw =

whenNaN 0 (exp (min 0 (proposal - current + bw - fw)))

where

whenNaN val x

| isNaN x = val

| otherwise = x

-- Record the present value of every node in its history.

snapshot :: Functor f => Cofree f Node -> Cofree f Node

snapshot = extend snapshotValue

snapshotValue :: Cofree f Node -> Node

snapshotValue (Node {..} :< _) = Node { nodeHistory = history, .. } where

history = nodeValue : nodeHistory

-- Data.Bits.Extended ---------------------------------------------------------

-- | A pure xorshift implementation.

--

-- See: https://en.wikipedia.org/wiki/Xorshift.
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xorshift :: (Bits t, Num t) => (t, t) -> ((t, t), t)

xorshift (s0, s1) = ((s1, s11), s11 + s1) where

x = s0 ‘xor‘ shiftL s0 23

s11 = x ‘xor‘ s1 ‘xor‘ (shiftR x 17) ‘xor‘ (shiftR s1 26)

-- Data.Dynamic.Extended ------------------------------------------------------

unsafeFromDyn :: Typeable a => Dynamic -> a

unsafeFromDyn = fromJust . fromDynamic
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Appendix B

Primitive Markov Transition Code

Below is the full code corresponding to the various primitive transition operators
described in Chapter 5. Note that the implementations depend on a number of
third-party libraries; see the repositories listed in Chapter 1 for details on these.

Each primitive transition below depends on the ‘Declarative.Core’ and ‘Declar-
ative.Types’ modules which contain the code included in Chapter 5, plus the
following simple construction for the ‘OptionalStore’ parameter:

type OptionalStore = HashMap Algorithm OptionalInfo

data Algorithm =

MH

| HMC

| MALA

| Slice

| NUTS

deriving (Eq, Show)

instance Hashable Algorithm where
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hashWithSalt n = hashWithSalt n . show

data OptionalInfo =

ODouble Double

| OInt Int

| OPair (OptionalInfo, OptionalInfo)

deriving (Eq, Show)

B.1 Metropolis-Hastings

{-# LANGUAGE RankNTypes #-}

import Control.Monad.Primitive

import Control.Monad.State.Strict

import Data.HashMap.Strict (HashMap)

import qualified Data.HashMap.Strict as HashMap

import Data.Vector.Unboxed (Vector)

import qualified Data.Vector.Unboxed as V

import Declarative.Core

import Declarative.Types

import Statistics.Distribution

import Statistics.Distribution.Normal

metropolisHastings :: PrimMonad m => Maybe Double -> Transition m Double

metropolisHastings e = do

Chain current target _ store <- get

let sd = getStandardDeviation e store

proposed <- lift $ perturb current sd

zc <- lift unit

let next = nextState target current proposed sd zc

newStore = updateStandardDeviation sd store
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put $ Chain next target (logObjective target next) newStore

return next

sphericalGaussian :: Vector Double -> Vector Double -> Double -> Double

sphericalGaussian xs mu sd = product $ zipWith density normalDists xsAsList

where

xsAsList = V.toList xs

muAsList = V.toList mu

normalDists = map (‘normalDistr‘ sd) muAsList

perturb

:: PrimMonad m

=> Vector Double

-> Double

-> Prob m (Vector Double)

perturb q sd = V.mapM (‘normal‘ sd) q

acceptRatio

:: Target Double -> Vector Double -> Vector Double -> Double -> Double

acceptRatio target current proposed sd = exp . min 0 $

logObjective target proposed + log (sphericalGaussian current proposed sd)

- logObjective target current - log (sphericalGaussian proposed current sd)

nextState

:: Target Double

-> Vector Double

-> Vector Double

-> Double

-> Double

-> Vector Double

nextState target current proposed sd z

| z < acceptProb = proposed
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| otherwise = current

where

ratio = acceptRatio target current proposed sd

acceptProb | isNaN ratio = 0

| otherwise = ratio

getStandardDeviation :: Maybe Double -> OptionalStore -> Double

getStandardDeviation (Just sd) _ = sd

getStandardDeviation Nothing store = sd where

(ODouble sd) = HashMap.lookupDefault (ODouble 1.0) MH store

updateStandardDeviation :: Double -> OptionalStore -> OptionalStore

updateStandardDeviation sd = HashMap.insert MH (ODouble sd)

B.2 Slice Sampling

{-# OPTIONS_GHC -Wall #-}

{-# LANGUAGE BangPatterns #-}

{-# LANGUAGE DoAndIfThenElse #-}

{-# LANGUAGE RankNTypes #-}

import Control.Monad

import Control.Monad.Primitive

import Control.Monad.State.Strict

import Data.Vector.Unboxed (Vector, Unbox)

import qualified Data.Vector.Unboxed as V

import qualified Data.Vector.Unboxed.Mutable as V hiding (length)

import Declarative.Core

import Declarative.Types

import System.Random.MWC hiding (uniform)
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slice :: PrimMonad m => Double -> Transition m Double

slice e = do

Chain position target _ _ <- get

let n = V.length position

forM_ [0..n - 1] $ \j -> do

Chain q _ _ store <- get

height <- liftM log $ lift $ uniform (0, exp $ logObjective target q)

bracket <- lift . lift $ findBracket (logObjective target) j e height q

next <- lift $ rejection (logObjective target) j bracket height q

put $ Chain next target (logObjective target next) store

Chain q _ _ _ <- get

return q

findBracket :: (Num b, Ord a, PrimMonad m, Unbox b)

=> (Vector b -> a)

-> Int

-> b

-> a

-> Vector b

-> m (b, b)

findBracket f j step height xs = go step xs xs where

go !e !bl !br

| f bl < height && f br < height =

return (bl ‘V.unsafeIndex‘ j , br ‘V.unsafeIndex‘ j)

| f bl < height && f br >= height = do

br0 <- expandBracketRight j e br

go (2 * e) bl br0

| f bl >= height && f br < height = do

bl0 <- expandBracketLeft j e bl

go (2 * e) bl0 br

| otherwise = do

253



bl0 <- expandBracketLeft j e bl

br0 <- expandBracketRight j e br

go (2 * e) bl0 br0

expandBracketBy

:: (PrimMonad m, Unbox a)

=> (a -> a -> a) -> Int -> a -> Vector a -> m (Vector a)

expandBracketBy f j e xs = do

v <- V.thaw xs

xj <- V.unsafeRead v j

V.unsafeWrite v j (f xj e)

V.freeze v

expandBracketRight

:: (Num a, Unbox a, PrimMonad m)

=> Int -> a -> Vector a -> m (Vector a)

expandBracketRight = expandBracketBy (+)

expandBracketLeft

:: (Unbox a, Num a, PrimMonad m)

=> Int -> a -> Vector a -> m (Vector a)

expandBracketLeft = expandBracketBy (-)

rejection

:: (Ord b, Unbox a, PrimMonad m, Variate a)

=> (Vector a -> b)

-> Int

-> (a, a)

-> b

-> Vector a

-> Prob m (Vector a)

rejection f j bracket height = go where
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go zs = do

u <- uniform bracket

v <- lift $ V.thaw zs

lift $ V.unsafeWrite v j u

cool <- lift $ V.freeze v

if f cool < height

then go cool

else return cool

B.3 Metropolis-Adjusted Langevin Diffusion

import Control.Monad

import Control.Monad.Primitive

import Control.Monad.State.Strict

import Declarative.Core

import Declarative.Types

import Data.HashMap.Strict (HashMap)

import qualified Data.HashMap.Strict as HashMap

import Data.Vector.Unboxed (Vector)

import qualified Data.Vector.Unboxed as V

import Statistics.Distribution

import Statistics.Distribution.Normal

mala :: PrimMonad m => Maybe Double -> Transition m Double

mala e = do

Chain current target _ store <- get

let step = getStepSize e store

proposal <- lift $ perturb target current step

zc <- lift unit

let cMean = localMean target current step
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pMean = localMean target proposal step

next = nextState target (current, cMean) (proposal, pMean) step zc

newStore = updateStepSize step store

put $ Chain next target (logObjective target next) newStore

return next

sphereGauss :: Vector Double -> Vector Double -> Double -> Double

sphereGauss xs mu sd = product $ zipWith density normalDists xsAsList where

xsAsList = V.toList xs

muAsList = V.toList mu

normalDists = map (‘normalDistr‘ sd) muAsList

(.*) :: Double -> Vector Double -> Vector Double

z .* xs = V.map (* z) xs

(.+) :: Vector Double -> Vector Double -> Vector Double

xs .+ ys = V.zipWith (+) xs ys

localMean :: Target Double -> Vector Double -> Double -> Vector Double

localMean target position e = position .+ scaledGradient position where

grad = handleGradient (gradient target)

scaledGradient p = (0.5 * e * e) .* grad p

perturb

:: PrimMonad m

=> Target Double

-> Vector Double

-> Double

-> Prob m (Vector Double)

perturb target position e = do

zs <- V.replicateM (V.length position) standardNormal
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return $ localMean target position e .+ (e .* zs)

getStepSize :: Maybe Double -> OptionalStore -> Double

getStepSize (Just step) _ = step

getStepSize Nothing store = step where

(ODouble step) = HashMap.lookupDefault (ODouble 1.0) MALA store

updateStepSize :: Double -> OptionalStore -> OptionalStore

updateStepSize step = HashMap.insert MALA (ODouble step)

nextState

:: Target Double

-> (Vector Double, Vector Double)

-> (Vector Double, Vector Double)

-> Double

-> Double

-> Vector Double

nextState target (current, cMean) (proposal, pMean) e z

| z < acceptProb = proposal

| otherwise = current

where

ratio = acceptRatio target (current, cMean) (proposal, pMean) e

acceptProb | isNaN ratio = 0

| otherwise = ratio

acceptRatio

:: Target Double

-> (Vector Double, Vector Double)

-> (Vector Double, Vector Double)

-> Double

-> Double

acceptRatio target (current, cMean) (proposal, pMean) e = exp . min 0 $
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logObjective target proposal + log (sphereGauss current pMean e)

- logObjective target current - log (sphereGauss proposal cMean e)

B.4 Hamiltonian Monte Carlo

{-# LANGUAGE RankNTypes #-}

import Control.Monad

import Control.Monad.Primitive

import Control.Monad.State.Strict

import Control.Monad.Trans

import qualified Data.HashMap.Strict as HashMap

import Data.Vector.Unboxed (Vector, Unbox)

import qualified Data.Vector.Unboxed as V

import Declarative.Core

import Declarative.Types

hamiltonian :: PrimMonad m => Maybe Double -> Maybe Int -> Transition m Double

hamiltonian e l = do

Chain current target _ store <- get

let (stepSize, nDisc) = getParameters e l store

q0 = current

r0 <- V.replicateM (V.length q0) (lift standardNormal)

zc <- lift unit

let (q, r) = leapfrogIntegrator target q0 r0 stepSize nDisc

next = nextState zc target q0 q r0 r

newStore = updateParameters stepSize nDisc store

put $ Chain next target (logObjective target next) newStore

return next

leapfrog
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:: Target Double

-> Vector Double

-> Vector Double

-> Double

-> (Vector Double, Vector Double)

leapfrog target q r e = (qf, rf) where

rm = adjustMomentum glTarget e q r

qf = adjustPosition e rm q

rf = adjustMomentum glTarget e qf rm

glTarget = handleGradient $ gradient target

leapfrogIntegrator

:: (Enum a, Eq a, Num a)

=> Target Double

-> Vector Double

-> Vector Double

-> Double

-> a

-> (Vector Double, Vector Double)

leapfrogIntegrator target q0 r0 e = go q0 r0 where

go q r 0 = (q, r)

go q r n = let (q1, r1) = leapfrog target q r e

in go q1 r1 (pred n)

adjustMomentum

:: (t -> Vector Double)

-> Double

-> t

-> Vector Double

-> Vector Double

adjustMomentum glTarget e q r = r .+ ((0.5 * e) .* glTarget q)
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adjustPosition :: (Unbox a, Num a) => a -> Vector a -> Vector a -> Vector a

adjustPosition e r q = q .+ (e .* r)

acceptanceRatio

:: (Unbox a, Floating a)

=> (t -> a)

-> t

-> t

-> Vector a

-> Vector a -> a

acceptanceRatio lTarget q0 q1 r0 r1 =

auxilliaryTarget lTarget q1 r1 - auxilliaryTarget lTarget q0 r0

auxilliaryTarget :: (Unbox a, Floating a) => (t -> a) -> t -> Vector a -> a

auxilliaryTarget lTarget q r = lTarget q - 0.5 * innerProduct r r

innerProduct :: (Unbox a, Num a) => Vector a -> Vector a -> a

innerProduct xs ys = V.sum $ V.zipWith (*) xs ys

(.*) :: (Unbox a, Num a) => a -> Vector a -> Vector a

z .* xs = V.map (* z) xs

(.-) :: (Unbox a, Num a) => Vector a -> Vector a -> Vector a

xs .- ys = V.zipWith (-) xs ys

(.+) :: (Unbox a, Num a) => Vector a -> Vector a -> Vector a

xs .+ ys = V.zipWith (+) xs ys

nextState

:: Unbox a

=> Double

-> Target a
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-> Vector a

-> Vector a

-> Vector Double

-> Vector Double

-> Vector a

nextState z target q0 q1 r0 r1

| z < min 1 ratio = q1

| otherwise = q0

where

ratio = exp $ acceptanceRatio (logObjective target) q0 q1 r0 r1

getParameters :: Maybe Double -> Maybe Int -> OptionalStore -> (Double, Int)

getParameters (Just e) (Just l) _ = (e, l)

getParameters _ _ store = (e, l) where

OPair (ODouble e, OInt l) =

HashMap.lookupDefault (OPair (ODouble 0.05, OInt 20)) HMC store

updateParameters :: Double -> Int -> OptionalStore -> OptionalStore

updateParameters e l = HashMap.insert HMC (OPair (ODouble e, OInt l))

B.5 No U-Turn Sampler

{-# LANGUAGE DoAndIfThenElse #-}

import Control.Monad

import Control.Monad.Primitive

import Control.Monad.Trans

import Control.Monad.Trans.State.Strict

import Data.HashMap.Strict (HashMap)

import qualified Data.HashMap.Strict as HashMap

import Data.Vector.Unboxed (Vector, Unbox)
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import qualified Data.Vector.Unboxed as V

import Declarative.Core

import Declarative.Types

type Parameters = Vector Double

type Gradient = Parameters -> Parameters

type Particle = (Parameters, Parameters)

-- | The NUTS transition kernel.

nuts :: PrimMonad m => Transition m Double

nuts = do

Chain t target _ store <- get

r0 <- V.replicateM (V.length t) (lift $ normal 0 1)

z0 <- lift $ exponential 1

let logu = log (auxilliaryTarget lTarget t r0) - z0

lTarget = logObjective target

glTarget = handleGradient $ gradient target

e = getStepSize Nothing store

let go (tn, tp, rn, rp, tm, j, n, s)

| s == 1 = do

vj <- lift $ categorical [-1, 1]

z <- lift unit

(tnn, rnn, tpp, rpp, t1, n1, s1) <-

if vj == -1

then do

(tnn’, rnn’, _, _, t1’, n1’, s1’) <-

buildTree lTarget glTarget tn rn logu vj j e

return (tnn’, rnn’, tp, rp, t1’, n1’, s1’)

else do

(_, _, tpp’, rpp’, t1’, n1’, s1’) <-
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buildTree lTarget glTarget tp rp logu vj j e

return (tn, rn, tpp’, rpp’, t1’, n1’, s1’)

let accept = s1 == 1 && (min 1 (fi n1 / fi n :: Double)) > z

n2 = n + n1

s2 = s1 * stopCriterion tnn tpp rnn rpp

j1 = succ j

t2 | accept = t1

| otherwise = tm

go (tnn, tpp, rnn, rpp, t2, j1, n2, s2)

| otherwise = do

put $ Chain tm target (lTarget tm) (updateStepSize e store)

return tm

go (t, t, r0, r0, t, 0, 1, 1)

getStepSize :: Maybe Double -> OptionalStore -> Double

getStepSize (Just e) _ = e

getStepSize Nothing store = e where

(ODouble e) = HashMap.lookupDefault (ODouble 0.1) NUTS store

updateStepSize :: Double -> OptionalStore -> OptionalStore

updateStepSize e = HashMap.insert NUTS (ODouble e)

buildTree lTarget glTarget t r logu v 0 e = do

let (t0, r0) = leapfrog glTarget (t, r) (v * e)

joint = log $ auxilliaryTarget lTarget t0 r0

n = indicate (logu < joint)

s = indicate (logu - 1000 < joint)
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return (t0, r0, t0, r0, t0, n, s)

buildTree lTarget glTarget t r logu v j e = do

z <- lift unit

(tn, rn, tp, rp, t0, n0, s0) <-

buildTree lTarget glTarget t r logu v (pred j) e

if s0 == 1

then do

(tnn, rnn, tpp, rpp, t1, n1, s1) <-

if v == -1

then do

(tnn’, rnn’, _, _, t1’, n1’, s1’) <-

buildTree lTarget glTarget tn rn logu v (pred j) e

return (tnn’, rnn’, tp, rp, t1’, n1’, s1’)

else do

(_, _, tpp’, rpp’, t1’, n1’, s1’) <-

buildTree lTarget glTarget tp rp logu v (pred j) e

return (tn, rn, tpp’, rpp’, t1’, n1’, s1’)

let accept = (fi n1 / max (fi (n0 + n1)) 1) > (z :: Double)

n2 = n0 + n1

s2 = s0 * s1 * stopCriterion tnn tpp rnn rpp

t2 | accept = t1

| otherwise = t0

return (tnn, rnn, tpp, rpp, t2, n2, s2)

else return (tn, rn, tp, rp, t0, n0, s0)

-- | Determine whether or not to stop doubling the tree of candidate states.

stopCriterion :: (Integral a, Num b, Ord b, Unbox b)

=> Vector b -> Vector b -> Vector b -> Vector b -> a
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stopCriterion tn tp rn rp =

indicate (positionDifference ‘innerProduct‘ rn >= 0)

* indicate (positionDifference ‘innerProduct‘ rp >= 0)

where

positionDifference = tp .- tn

-- | Simulate a single step of Hamiltonian dynamics.

leapfrog :: Gradient -> Particle -> Double -> Particle

leapfrog glTarget (t, r) e = (tf, rf) where

rm = adjustMomentum glTarget e t r

tf = adjustPosition e rm t

rf = adjustMomentum glTarget e tf rm

-- | Adjust momentum.

adjustMomentum :: (Fractional c, Unbox c)

=> (t -> Vector c) -> c -> t -> Vector c -> Vector c

adjustMomentum glTarget e t r = r .+ ((e / 2) .* glTarget t)

-- | Adjust position.

adjustPosition :: (Num c, Unbox c) => c -> Vector c -> Vector c -> Vector c

adjustPosition e r t = t .+ (e .* r)

-- | The MH acceptance ratio for a given proposal.

acceptanceRatio :: (Floating a, Unbox a)

=> (t -> a) -> t -> t -> Vector a -> Vector a -> a

acceptanceRatio lTarget t0 t1 r0 r1 = auxilliaryTarget lTarget t1 r1

/ auxilliaryTarget lTarget t0 r0

-- | The negative potential.

auxilliaryTarget :: (Floating a, Unbox a) => (t -> a) -> t -> Vector a -> a

auxilliaryTarget lTarget t r = exp (lTarget t - 0.5 * innerProduct r r)
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-- | Simple inner product.

innerProduct :: (Num a, Unbox a) => Vector a -> Vector a -> a

innerProduct xs ys = V.sum $ V.zipWith (*) xs ys

-- | Vectorized multiplication.

(.*) :: (Num a, Unbox a) => a -> Vector a -> Vector a

z .* xs = V.map (* z) xs

-- | Vectorized subtraction.

(.-) :: (Num a, Unbox a) => Vector a -> Vector a -> Vector a

xs .- ys = V.zipWith (-) xs ys

-- | Vectorized addition.

(.+) :: (Num a, Unbox a) => Vector a -> Vector a -> Vector a

xs .+ ys = V.zipWith (+) xs ys

-- | Indicator function.

indicate :: Integral a => Bool -> a

indicate True = 1

indicate False = 0

-- | Alias for fromIntegral.

fi :: (Integral a, Num b) => a -> b

fi = fromIntegral
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