-Mmbedded Domain-Specific
_anguages for Bayesian Modeling
and Inference

Nesis

Novel and useful domain-specific
languages tor solving statistical

cmpedaed in

oroplems can be
statically-typed, pu

orogramming

elv-functional

anguages.

Defence

—irst Claim

The Giry monad' is suitable for
representing probabilistic
semantics in an empedded
functional language.

' Lawvere (1962), Giry (1981)

ts functorial, applicative, anc
mMonadic structure corresponds to
mage measure, product measure,
and marginalization” respectively.

> Ramsey & Pfeffer (2002)

P : Meas — Meas functor (image measure)
¢:PM)QP(N)— P(ME®N) applicative (product measure)
n: M — P(M) applicative (Dirac measure)

)

>: P(M) - (M — P(N)) — P(N) monad (marginalize

instance Functor Measure where
fmap ¢ nu = Measure (\f ->
integrate (f . g) nu)

instance Applicative Measure where
pure X = Measure (\f -> f x)
Measure g <*> Measure h = Measure (\f ->
g (\k > h (f . k))

instance Monad Measure where
return x = Measure (\f -> f x)
rho >>= g = Measure (\f ->
integrate (\m -> integrate f (g m)) rho)

mage measure

inverseGamma :: Double -> Double -> Measure Double
inverseGamma a b = fmap recip (gamma a b)

oroduct measure (convolution)

chiSq2 :: Measure Double
chiSg2 = gsq + gsq where
gsq = fmap (* 2) (gaussian 0 1)

Marginalization

betaBinomial :: Int -> Double -> Double -> Measure Int
betaBinomial n a b = do

p <- beta a b

binomial n p

The Giry monad is equivalent to
the well-known continuation
monad” when the return type is
restricted to the real numbers.

* Wadler (1994)

giry
newtype Measure a = Measure ((a -> Double) -> Double)

integrate :: (a -> Double) -> Measure a -> Double
integrate f (Measure nu) = nu f

continuation

newtype Cont r a = Cont ((a -=> r) -> r)

run :: (a ->r) > Contra->r
run f (Cont k) = k f

Second Claim

The propabilistic semantics of the
Giry monad are preserved unaer

AN apstract or

that faitnfully represents

probanilis

* See also: Scibior et al (2015)

ree” represen

iC programs.

Ld

loN

U:(G,...)— G forgetful functor
F:G— (G,u,n) free monad
F4U adjunction

abstract giry functor (P : Meas — Meas)

data Prob r =

Beta Double Double (Double -> r)
Bernoulli Double (Bool -> r)
Gaussian Double Double (Double -> r)

propabilistic program (F’P : Meas — (P, /, 5))

type Program = Free Prob

example: bayesian regression model

prior = do
intercept <- gaussian 0 10
slope <- gaussian 0 10
variance <- uniform (0, 100)
return (intercept, slope, variance)

likelihood observations (a, b, v) = do
let model x = gaussian (a + b * x) (sqrt v)
for observations model

predictive observations = do
parameters <- prior
likelihood observations parameters

example: gaussian mixture model

mixture a b = do
prob <- beta a b
heads <- bernoulli prob
1f heads
then gaussian 0 2
else gaussian 2 2

example: gaussian mixture model
©
c

Normal

©<

This abstract propapility monad
nas No probabilistic interpretation
tied to it a priori; it is generic and
can be ascriped specific
Nnterpretations (e.g pmbabmty
Measure, random variable)” after
the fact

> Ramsey & Pfeffer (2002), Park et al (2008)

measure :: Program a -> Measure a

measure = iterM $ \case
Beta a b r -> Measurable.beta a b >>= r
Bernoulli p r -> Measurable.bernoulli p >>= r
Gaussian m s r -> Measurable.gaussian m s >>= r

rvar :: Program a -> RandomVariable a
rvar = iterM $ \case
Beta a b r -> MWC.beta a b >>=r

Bernoulli p r -> MWC.bernoulli p >>= r
Gaussian m s r -> MWC.gausslan m s >>= r

The dual or cofree comonad of the
free proobapility monad represents
an execution trace® of a
orobapilistic program.

° Wingate et al (2011), Mansinghka et al (2014)

U:(G,...)—G forgetful functor
F':G— (G,v,X) cofree comonad
U-F adjunction

FAUAF

poropabilistic node state

data State = State {

cost : . Double
, value . : Dynamic
, prng . . Seed

, history :: [Dynamic]
J

execution trace (F'P : Meas — (P, 0, X))

type Trace a = Cofree (Prob a) State

execution trace

State

State

State

State

Beta

Bernoulli

Dirac

State

4
Nor@ Normal

State

Y
Dirac

-Xxecution traces can be perturoec
UsSing standard comonadic
Mmachinery in order to perform
iNference via e.g. single-site MCMC

N trace space.

per-node proposal

proposal :: Trace a -> State
proposal = <abstract>

comonadic ‘extend’
=>: P(M) - (P(M) - N) — P(N)

Mmarkov transition

transition :: Trace a -> Trace a
transition = extend proposal

comonadic duplication

Bernoulli

> v r
S
(V/N\

The Tree applicative functor
encodes propapilistic
iNndependence such that it can be
observed and interpreted statically.

id" combinator

model :: Int -> Int -> Double -> Double -> Program [[Bool]]
model m n a b = do
c <- fmap (+ 1) (beta a b)
d <- fmap (+ 2) (beta a b)
1id m $ do
p <- beta c d
11d n (bernoulli p)

Nird Claim

The well-known state monad can
e used to represent transition
operators for constructing Markov
cnains.

target function

data Target a = Target {
ltarget :: Vector a -> Double
, gltarget :: Maybe (Vector a -> Vector a)

¥

Mmarkov chain state

data Markov a = Markov {
target .. Target a
, position :: Vector a

}

transition operator

type Transition a = StateT (Markov a) Prob (Vector a)

A simple, shallowly-embeadeo
language consisting of
deterministic and random
concatenation terms can pe used
£O pbuild compound transition
operators.

transition ::= primitive <primitive>
| concat transition transition
| sample transition transition

implementation

concat :: Transition a -> Transition a -> Transition a
concat s £t = s > t

sample :: Double -> Transition a -> Transition a -> Transition a
sample p s t = do

heads <- 1lift (bernoulli p)

1T heads

then s

else t

These compound transitions are
Ssuaranteed by construction’ to
obey the Markov, ergodicity, and
detailed balance properties
required for MCMC.

" Geyer (2005)

use a numbper of metropolis transitions

transition :: Transition Double
transition = do

metropolis 0.5

metropolis 1.0

metropolis 2.0

use a variety of slice sampling transitions

transition :: Transition Double
transition = do

slice 0.5

slice 1.0

sample 0.5 (slice 0.4) (slice 10.0)

occasionally use gradient information

transition :: Transition Double

transition = do
sample 0.8 (metropolis 3.0) (hamiltonian 0.05 20)
slice 3.0

Compound transition operators
can pe more effective than simple
[ransitions.

simulations

transition ESS(z) ESS(y)
mh-beale) 47
mh-radial-beale 26 60
hmc-beale 489 663
nuts-beale 437 749
custom-beale 31 58

random-beale 21 Y

I I I
-25 00 25
X

The language can easily be
extended to support tecnnigues
such as annealing

annealing transformer

anneal :: Double -> Transition Double -> Transition Double
anneal invtemp = <abstract>

annealed transition

annealed :: Transition Double -> Transition Double
annealed transition = do

anneal 0.70 transition

anneal 0.05 transition

anneal 0.05 transition

anneal 0.70 transition

transition

simulations

custom-himmelblau hmc—-himmelblau mh-himmelblau

mh-radial-himmelblau nuts—himmelblau random-himmelblau

m
\
Y

@

Conclusion

ne Giry monaad captures
mMeaningful propabilistic semantics

and allows one to construct an
empbedded language for probability
measures.

Abstract free or cofree
representations preserve tne
orobapilistic semantics of the Giry
Mmonad and allow for rich
iNterpretation.

The state monad allows one to
construct an empbedaed language
for Markov transitions that are
usetul in MCMC.

Thus: novel and useful domain-
specific languages for solving

statis

fical problems can pe

ceMmpec

ded in statically-typed,

ourely-functional programming

languages.

QOED

