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Thesis



Novel and useful domain-specific 
languages for solving statistical 
problems can be embedded in 

statically-typed, purely-functional 
programming languages.



Defence



First Claim



The Giry monad1 is suitable for 
representing probabilistic 

semantics in an embedded 
functional language.

1 Lawvere (1962), Giry (1981)



Its functorial, applicative, and 
monadic structure corresponds to 
image measure, product measure, 
and marginalization2 respectively.

2 Ramsey & Pfeffer (2002)





instance Functor Measure where
  fmap g nu = Measure (\f ->
    integrate (f . g) nu)

instance Applicative Measure where
  pure x                  = Measure (\f -> f x)
  Measure g <*> Measure h = Measure (\f ->
    g (\k -> h (f . k))

instance Monad Measure where
  return x  = Measure (\f -> f x)
  rho >>= g = Measure (\f ->
    integrate (\m -> integrate f (g m)) rho)



image measure

inverseGamma :: Double -> Double -> Measure Double
inverseGamma a b = fmap recip (gamma a b)



product measure (convolution)

chiSq2 :: Measure Double
chiSq2 = gsq + gsq where
  gsq = fmap (^ 2) (gaussian 0 1)



marginalization

betaBinomial :: Int -> Double -> Double -> Measure Int
betaBinomial n a b = do
  p <- beta a b
  binomial n p



The Giry monad is equivalent to 
the well-known continuation 

monad3 when the return type is 
restricted to the real numbers.

3 Wadler (1994)



giry

newtype Measure a = Measure ((a -> Double) -> Double)

integrate :: (a -> Double) -> Measure a -> Double
integrate f (Measure nu) = nu f

continuation

newtype Cont r a = Cont ((a -> r) -> r)

run :: (a -> r) -> Cont r a -> r
run f (Cont k) = k f



Second Claim



The probabilistic semantics of the 
Giry monad are preserved under 

an abstract or free4 representation 
that faithfully represents 
probabilistic programs.

4 See also: Scibior et al (2015)





abstract giry functor 

data Prob r =
    Beta Double Double (Double -> r)
  | Bernoulli Double (Bool -> r)
  | Gaussian Double Double (Double -> r)
  | ...

probabilistic program 

type Program = Free Prob



example: bayesian regression model

prior = do
  intercept <- gaussian 0 10
  slope     <- gaussian 0 10
  variance  <- uniform (0, 100)
  return (intercept, slope, variance)

likelihood observations (a, b, v) = do
  let model x = gaussian (a + b * x) (sqrt v)
  for observations model

predictive observations = do
  parameters <- prior
  likelihood observations parameters



example: gaussian mixture model

mixture a b = do
  prob  <- beta a b
  heads <- bernoulli prob
  if   heads
  then gaussian 0 2
  else gaussian 2 2



example: gaussian mixture model

Beta

Bernoulli

Normal Normal

Dirac Dirac



This abstract probability monad 
has no probabilistic interpretation 
tied to it a priori; it is generic and 

can be ascribed specific 
interpretations (e.g. probability 

measure, random variable)5 after 
the fact.

5 Ramsey & Pfeffer (2002), Park et al (2008)



measure :: Program a -> Measure a
measure = iterM $ \case
  Beta a b r     -> Measurable.beta a b >>= r
  Bernoulli p r  -> Measurable.bernoulli p >>= r
  Gaussian m s r -> Measurable.gaussian m s >>= r
  ...

rvar :: Program a -> RandomVariable a
rvar = iterM $ \case
  Beta a b r     -> MWC.beta a b >>= r
  Bernoulli p r  -> MWC.bernoulli p >>= r
  Gaussian m s r -> MWC.gaussian m s >>= r
  ...



The dual or cofree comonad of the 
free probability monad represents 

an execution trace6 of a 
probabilistic program.

6 Wingate et al (2011), Mansinghka et al (2014)





probabilistic node state

data State = State {
    cost    :: Double
  , value   :: Dynamic
  , prng    :: Seed
  , history :: [Dynamic]
  }

execution trace 

type Trace a = Cofree (Prob a) State



execution trace
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Execution traces can be perturbed 
using standard comonadic 

machinery in order to perform 
inference via e.g. single-site MCMC 

in trace space.



per-node proposal

proposal :: Trace a -> State
proposal = <abstract>

comonadic 'extend'

markov transition

transition :: Trace a -> Trace a
transition = extend proposal



comonadic duplication
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The free applicative functor 
encodes probabilistic 

independence such that it can be 
observed and interpreted statically.



'iid' combinator

model :: Int -> Int -> Double -> Double -> Program [[Bool]]
model m n a b = do
  c <- fmap (+ 1) (beta a b)
  d <- fmap (+ 2) (beta a b)
  iid m $ do
    p <- beta c d
    iid n (bernoulli p)



Third Claim



The well-known state monad can 
be used to represent transition 

operators for constructing Markov 
chains.



target function

data Target a = Target {
    ltarget  :: Vector a -> Double
  , gltarget :: Maybe (Vector a -> Vector a)
  }

markov chain state

data Markov a = Markov {
    target   :: Target a
  , position :: Vector a
  }

transition operator

type Transition a = StateT (Markov a) Prob (Vector a)



A simple, shallowly-embedded 
language consisting of 

deterministic and random 
concatenation terms can be used 

to build compound transition 
operators.



transition ::= primitive <primitive>
             | concat transition transition
             | sample transition transition



implementation

concat :: Transition a -> Transition a -> Transition a
concat s t = s >> t

sample :: Double -> Transition a -> Transition a -> Transition a
sample p s t = do
  heads <- lift (bernoulli p)
  if   heads
  then s
  else t



These compound transitions are 
guaranteed by construction7 to 
obey the Markov, ergodicity, and 

detailed balance properties 
required for MCMC.

7 Geyer (2005)



use a number of metropolis transitions

transition :: Transition Double
transition = do
  metropolis 0.5
  metropolis 1.0
  metropolis 2.0



use a variety of slice sampling transitions

transition :: Transition Double
transition = do
  slice 0.5
  slice 1.0
  sample 0.5 (slice 0.4) (slice 10.0)



occasionally use gradient information

transition :: Transition Double
transition = do
  sample 0.8 (metropolis 3.0) (hamiltonian 0.05 20)
  slice 3.0



Compound transition operators 
can be more effective than simple 

transitions.



simulations
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The language can easily be 
extended to support techniques 

such as annealing.



annealing transformer

anneal :: Double -> Transition Double -> Transition Double
anneal invtemp = <abstract>

annealed transition

annealed :: Transition Double -> Transition Double
annealed transition = do
  anneal 0.70 transition
  anneal 0.05 transition
  anneal 0.05 transition
  anneal 0.70 transition
  transition



simulations
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Conclusion



The Giry monad captures 
meaningful probabilistic semantics 

and allows one to construct an 
embedded language for probability 

measures.



Abstract free or cofree 
representations preserve the 

probabilistic semantics of the Giry 
monad and allow for rich 

interpretation.



The state monad allows one to 
construct an embedded language 

for Markov transitions that are 
useful in MCMC.



Thus: novel and useful domain-
specific languages for solving 
statistical problems can be 

embedded in statically-typed, 
purely-functional programming 

languages.



QED


