
Embedded Domain-Specific
Languages for Bayesian Modeling

and Inference

Thesis

Novel and useful domain-specific
languages for solving statistical
problems can be embedded in

statically-typed, purely-functional
programming languages.

Defence

First Claim

The Giry monad1 is suitable for
representing probabilistic

semantics in an embedded
functional language.

1 Lawvere (1962), Giry (1981)

Its functorial, applicative, and
monadic structure corresponds to
image measure, product measure,
and marginalization2 respectively.

2 Ramsey & Pfeffer (2002)

instance Functor Measure where
 fmap g nu = Measure (\f ->
 integrate (f . g) nu)

instance Applicative Measure where
 pure x = Measure (\f -> f x)
 Measure g <*> Measure h = Measure (\f ->
 g (\k -> h (f . k))

instance Monad Measure where
 return x = Measure (\f -> f x)
 rho >>= g = Measure (\f ->
 integrate (\m -> integrate f (g m)) rho)

image measure

inverseGamma :: Double -> Double -> Measure Double
inverseGamma a b = fmap recip (gamma a b)

product measure (convolution)

chiSq2 :: Measure Double
chiSq2 = gsq + gsq where
 gsq = fmap (^ 2) (gaussian 0 1)

marginalization

betaBinomial :: Int -> Double -> Double -> Measure Int
betaBinomial n a b = do
 p <- beta a b
 binomial n p

The Giry monad is equivalent to
the well-known continuation

monad3 when the return type is
restricted to the real numbers.

3 Wadler (1994)

giry

newtype Measure a = Measure ((a -> Double) -> Double)

integrate :: (a -> Double) -> Measure a -> Double
integrate f (Measure nu) = nu f

continuation

newtype Cont r a = Cont ((a -> r) -> r)

run :: (a -> r) -> Cont r a -> r
run f (Cont k) = k f

Second Claim

The probabilistic semantics of the
Giry monad are preserved under

an abstract or free4 representation
that faithfully represents
probabilistic programs.

4 See also: Scibior et al (2015)

abstract giry functor

data Prob r =
 Beta Double Double (Double -> r)
 | Bernoulli Double (Bool -> r)
 | Gaussian Double Double (Double -> r)
 | ...

probabilistic program

type Program = Free Prob

example: bayesian regression model

prior = do
 intercept <- gaussian 0 10
 slope <- gaussian 0 10
 variance <- uniform (0, 100)
 return (intercept, slope, variance)

likelihood observations (a, b, v) = do
 let model x = gaussian (a + b * x) (sqrt v)
 for observations model

predictive observations = do
 parameters <- prior
 likelihood observations parameters

example: gaussian mixture model

mixture a b = do
 prob <- beta a b
 heads <- bernoulli prob
 if heads
 then gaussian 0 2
 else gaussian 2 2

example: gaussian mixture model

Beta

Bernoulli

Normal Normal

Dirac Dirac

This abstract probability monad
has no probabilistic interpretation
tied to it a priori; it is generic and

can be ascribed specific
interpretations (e.g. probability

measure, random variable)5 after
the fact.

5 Ramsey & Pfeffer (2002), Park et al (2008)

measure :: Program a -> Measure a
measure = iterM $ \case
 Beta a b r -> Measurable.beta a b >>= r
 Bernoulli p r -> Measurable.bernoulli p >>= r
 Gaussian m s r -> Measurable.gaussian m s >>= r
 ...

rvar :: Program a -> RandomVariable a
rvar = iterM $ \case
 Beta a b r -> MWC.beta a b >>= r
 Bernoulli p r -> MWC.bernoulli p >>= r
 Gaussian m s r -> MWC.gaussian m s >>= r
 ...

The dual or cofree comonad of the
free probability monad represents

an execution trace6 of a
probabilistic program.

6 Wingate et al (2011), Mansinghka et al (2014)

probabilistic node state

data State = State {
 cost :: Double
 , value :: Dynamic
 , prng :: Seed
 , history :: [Dynamic]
 }

execution trace

type Trace a = Cofree (Prob a) State

execution trace

Beta

Bernoulli

Normal Normal

Dirac Dirac

State

State

State

State

State

State

Execution traces can be perturbed
using standard comonadic

machinery in order to perform
inference via e.g. single-site MCMC

in trace space.

per-node proposal

proposal :: Trace a -> State
proposal = <abstract>

comonadic 'extend'

markov transition

transition :: Trace a -> Trace a
transition = extend proposal

comonadic duplication

Beta

Bernoulli

Normal Normal

Dirac Dirac

Beta

Bernoulli

Normal Normal

Dirac Dirac

State

State

State

State

State

State

Bernoulli

Normal Normal

Dirac Dirac

State

State

State

State

State

Normal

Dirac

State

State

Normal

Dirac

State

State

Dirac

State

Dirac

State

The free applicative functor
encodes probabilistic

independence such that it can be
observed and interpreted statically.

'iid' combinator

model :: Int -> Int -> Double -> Double -> Program [[Bool]]
model m n a b = do
 c <- fmap (+ 1) (beta a b)
 d <- fmap (+ 2) (beta a b)
 iid m $ do
 p <- beta c d
 iid n (bernoulli p)

Third Claim

The well-known state monad can
be used to represent transition

operators for constructing Markov
chains.

target function

data Target a = Target {
 ltarget :: Vector a -> Double
 , gltarget :: Maybe (Vector a -> Vector a)
 }

markov chain state

data Markov a = Markov {
 target :: Target a
 , position :: Vector a
 }

transition operator

type Transition a = StateT (Markov a) Prob (Vector a)

A simple, shallowly-embedded
language consisting of

deterministic and random
concatenation terms can be used

to build compound transition
operators.

transition ::= primitive <primitive>
 | concat transition transition
 | sample transition transition

implementation

concat :: Transition a -> Transition a -> Transition a
concat s t = s >> t

sample :: Double -> Transition a -> Transition a -> Transition a
sample p s t = do
 heads <- lift (bernoulli p)
 if heads
 then s
 else t

These compound transitions are
guaranteed by construction7 to
obey the Markov, ergodicity, and

detailed balance properties
required for MCMC.

7 Geyer (2005)

use a number of metropolis transitions

transition :: Transition Double
transition = do
 metropolis 0.5
 metropolis 1.0
 metropolis 2.0

use a variety of slice sampling transitions

transition :: Transition Double
transition = do
 slice 0.5
 slice 1.0
 sample 0.5 (slice 0.4) (slice 10.0)

occasionally use gradient information

transition :: Transition Double
transition = do
 sample 0.8 (metropolis 3.0) (hamiltonian 0.05 20)
 slice 3.0

Compound transition operators
can be more effective than simple

transitions.

simulations

custom−beale hmc−beale mh−beale

mh−radial−beale nuts−beale random−beale

−1

0

1

2

3

−1

0

1

2

3

−2.5 0.0 2.5 −2.5 0.0 2.5 −2.5 0.0 2.5
x

y

2500

5000

7500

10000
epoch

(x) (y)

The language can easily be
extended to support techniques

such as annealing.

annealing transformer

anneal :: Double -> Transition Double -> Transition Double
anneal invtemp = <abstract>

annealed transition

annealed :: Transition Double -> Transition Double
annealed transition = do
 anneal 0.70 transition
 anneal 0.05 transition
 anneal 0.05 transition
 anneal 0.70 transition
 transition

simulations

custom−himmelblau hmc−himmelblau mh−himmelblau

mh−radial−himmelblau nuts−himmelblau random−himmelblau

−2

0

2

−2

0

2

−2 0 2 4 −2 0 2 4 −2 0 2 4
x

y

2500

5000

7500

10000
epoch

−2.5

0.0

2.5

−2.5 0.0 2.5
x

y

500

1000

1500

2000
epoch

Conclusion

The Giry monad captures
meaningful probabilistic semantics

and allows one to construct an
embedded language for probability

measures.

Abstract free or cofree
representations preserve the

probabilistic semantics of the Giry
monad and allow for rich

interpretation.

The state monad allows one to
construct an embedded language

for Markov transitions that are
useful in MCMC.

Thus: novel and useful domain-
specific languages for solving
statistical problems can be

embedded in statically-typed,
purely-functional programming

languages.

QED

